مقدمه
مطالعات ما در مورد
مشتق فواید بسیاری دارد از جمله آنها
ترسیم توابع است. برای تعیین شکل نمودار از مشتقهای اول و دوم تابع استفاده میکنیم. مشتق اول تعیین میکند که نمودار در کجا
صعودی و در کجا نزولی است. مشتق دوم ما را مطلع میسازد که تقعر نمودار کجا رو به پایین و کجا رو به بالا است. بسیاری از نمودارهای وقتی X بزرگ شود، یا به مقادیر خاصی میل کند به خط مستقیم میل میکنند که تمام این مطالب بررسی خواهد شد.
رسم خم با استفاده از مشتق اول
وقتی بدانیم که تابعی در هر نقطه از بازهای مشتق دارد، بنابر قضایای مشتق خواهیم دانست که تابع در سراسر آن بازه پیوسته است و نمودارش در آن بازه قطع شدگی ندارد. مثلا نمودارهای توابع مشتقپذیر
y=Sin x همانند نمودار چند جملهایها ، هر چه ادامه بیابند قطع نمیشوند. نمودارهای
y = tan x و
y = 1/x2 صرفا در نقاطی که توابع مربوط تعریف نشده هستند قطع میشوند. بر بازهای که این نقاط را شامل نباشند توابع مزبور مشتق پذیرند؛ و بنابراین پیوستهاند و نمودارهایشان قطع شدگی ندارد. اگر بدانیم مشتق تابعی کجا مثبت و کجا منفی و کجا صفر میباشد، آنگاه میتوانیم درباره شکل نمودار آن تابع اطلاعاتی بدست آوریم. با دانستن این مطلب میتوان مشخص کرد که نمودار در کجا بالا میرود ، پایین میآید یا مماس افقی دارد.
تایعی چون
(y = f(x را سراسر یک بازه I
صعودی میگویند. هرگاه با افزایش y , x هم زیاد شود ؛ و در سراسر I نزولی گویند هرگاه با افزایش x و y کاهش یابد. وقتی x در I از چپ به راست حرکت میکند نمودار یک تابع صعودی ، خیز بر میدارد و نمودار یک تابع نزولی افت میکند. صعود یک تابع با مشتقهای مثبت همراه است و نزول تابع با مشتقهای منفی. بنابراین اگر ´f در هر نقطه از یک بازه I مثبت لاشد آنگاه f بر I صعود می کند. و اگر ´f در هر نقطه I منفی باشد، آنگاه f بر I نزول میکند. این واقعیتها را به عنوان آزمون مشتق اول برای صعودی و نزولی بودن میپذیریم. آزمون مشتق اول به زبان هندسی حاکمی است که توابع مشتقپذیر بر بازههایی صعود میکنند که نمودارشان شیب مثبت داشته باشند و بر بازههایی نزول می کنند که نمودارشان شیب منفی داشته باشند.
مماسهای افقی
از آنجا که مشتقی چون ´f در هر بازه I یی که َf تعریف شود دارای ویژگی مقدار میانی است، هر وقت ´f در این بازه تغییر علامت میدهد، باید مقدارش صفر شود. پس هر وقت َf در بازه I تغییر علامت میدهد نمودار f باید مماس افقی داشته باشد. اگر وقتی x از چپ به راست میرود و از نقطهای چون C میگذرد، مقدار ´f از مثبت به منفی تبدیل شود، آنگاه مقدار f در c یک مقدار Max موضعی f است. به همین ترتیب اگر وقتی x از از چپ به راست حرکت میکند و از نقطهای چون d میگذرد. مقدار ´f از منفی به مثبت تبدیل شود. مقدار f در d یک مقدار Min موضعی f است. *نمیتوان گفت که هر وقت مشتق صفر شد الزاما تغییر علامت در نمودار تابع ایجاد میشود، بنابراین گاهی اوقات در حالی که Min , Max وجود ندارند مماس افقی وجود دارد، مثل تابع
y = x3 با اینکه
y´= 3x2 در مبدأ صفر است و در هر دو طرف مثبت است. با این همه مماس افقی y=0 نمودار
y = x3 را در مبدأ قطع میکند.
تقعر و نقطه عطف
در این قسمت چگونگی رسم دقیقتر نمودار با استفاده از علامت مشتق دوم تابع را تشریح میکنیم. همان طور که میدانیم تابع
y = x3 (برای خودتان رسم کنید) همراه با افزایش x صعود میکند. اما قسمتی از خم که مربوط به بازه (0, ∞-) و قسمت مربوط به (∞و0) در جهتهای متنفاوتی میپیچیند، اگر در امتداد خم از سمت چپ به طرف مبدأ برویم پیچش خم به سمت راست است. وقتی از مبدأ دور میشویم، خم به سمت چپ میپیچد. توصیف پیچش به طریق دیگر این است که وقتی نقطه تماس از سمت چپ به مبدأ میل میکند مماس بر خم در جهت ساعت میچرخد، در این حالت شیب خم تقلیل مییابد. وقتی نقطه تماس از مبدأ وارد ربع اول میشود، مماس در خلاف جهت ساعت میچرخد. در این حالت میگوییم شیب خم زیاد شده است. بنابراین برای یافتن روی تقعر توسط
مشتق باید بگوییم در بازهای که ´y کم میشود تقعر رو به پایین دارد و در بازهای که ´y زیاد میشود تقعر رو به بالا دارد. توسط آزمون مشتق دوم میتوانیم بگوییم در نمودار
(y = f(x ، در بازهای که مشتق دوم y کوچکتر از صفر باشد، تقعر رو به پایین دارد. در بازه ای که مشتق دوم y بزرگتر از صفر باشد، تقعر رو به بالا دارد.
کاربرد نقطه عطف در رسم توابع
نقطهای از خم که در آن تقعر عوض میشود نقطه عطف داریم. پس نقطه عطف خمی که دو بار مشتق پذیر است نقطهای است در یک طرفش مثبت و در طرف دیگرش منفی است و خود مشتق دوم y در نقطه عطف مقدار صفر دارد. البته ممکن است مشتق دوم y در نقطهای که عطف نیست صفر باشد. همچنین ممکن است نقطه عطف در جایی باشد که مشتق دوم y وجود نداشته باشد.
مجانبها و تقارن
در این قسمت توابع گویا از x را با در نظر گرفتن رفتارشان ، وقتی مخرج به صفر نزدیک یا x از لحاظ عددی بزرگ میشود، بررسی می کنیم. نمودار
تابعهای زوج و فرد تقارنهایی دارند که آگاهی از آنها برای ترسیم نمودارشان مفید و مهم است.
- باید این را بدانیم که نمودار توابع زوج نسبت به محور yها متقارن است و نمودار توابع فرد نسبت به مبدأ مختصات متقارن میباشد.
مجانبهای افقی و قائم
وقتی یک نقطه p روی نمودار تابعی چون
(y = f(x رفته رفته از مبدأ دور میشود، ممکن است فاصله بین p و خطی ثابت به صفر نزدیک شود؛ به عبارت دیگر ، خم وقتی از مبدأ دور میشود به خط میل کند. در این حالت ، خط را مجانب نمودار مینامند.
خط y = b مجانب افقی نمودار
(y = f(x است اگر داشته باشیم: حد تابع
(y = f(x وقتی که x به سمت بینهایت و یا منفی بینهایت میل میکند برابر با b شود.
خط x = a مجانب قائم نمودار تابع است، اگر داشته باشیم: حد تابع
(y = f(x وقتی که x به سمت a
- و یا a
+ میل میکند برابر با ∞± شود.
مجانب مایل
اگر تابع گویایی خارج قسمت دو چند جملهای باشد که عامل مشترک نداشته باشند و اگر درجه صورت ، یک واحد از درجه مخرج بیشتر باشد، آنگاه نمودار یک مجانب مایل دارد. و بطور کلی برای رسم نمودار یک تابع باید مجانبها ، تقعرها ، نقاط عطف ، مماسها ، نقاط اکسترمم باید مشخص باشند.
کاربردها
رسم توابع مورد بحث ما در جاهای بسیار وسیع کاربرد دارد. برای مثال پرتاب یک موشک یا یک سفینه با بدست آوردن توابع مربوط و رسم نمودار آ«ها توسط کامپیوتر قبل از عملیات پرتاب توسط مهندسین مورد بررسی قرار میگیرد تا نحوه حرکت و سایر موارد مو شکافی گردد. در ستاره شناسی ، مکانیک ، شیمی و حتی علوم انسانی رسم نمودار توابع از ارزش اجتناب ناپذیری برخوردار است.
مباحث مرتبط با عنوان