مقدمه
پیلهای حرارتی مهمترین جزء باتری حرارتی به شمار میآیند. باتریهای حرارتی ، باتریهایی هستند که بخاطر دارا بودن یک سری ویژگیهای منحصر به فرد ، برای استفاده در اهداف نظامی کاملا مناسب میباشند. در این مقاله پیلهای حرارتی معرفی و طبقه بندی میشوند. سپس اجزای پیلهای حرارتی شامل آند ، کاتد و الکترولیت این پیلها و مواد تشکیل دهنده آنها معرفی میشود. باتری حرارتی یک منبع تولید کننده
جریان الکتریکی است که به علت دارا بودن چگالی جریان بالا و قابلیت اطمینان زیاد و عمر طولانی ، به منظور تأمین جریان الکتریکی مورد نیاز در سلاحهای نظامی بکار میروند. این جریان الکتریکی بوسیله تعدادی پیل تولید میشود. بر حسب اینکه جریان مصرفی مورد نیاز چقدر باشد، تعداد پیلها ، نحو ه آرایش آنها به صورت سری یا موازی و نیز ابعاد الکترودها متفاوت خواهد بود.
ساختمان پیل
هر پیل از سه بخش اصلی و سه بخش فرعی تشکیل شده است. اجزای اصلی عبارتند از: کاتد (قطب منفی) ، الکترولیت و آند (قطب مثبت). اجزای فرعی نیز عبارتند از جمع کننده جریان قطب مثبت ، جمع کننده جریان قطب منفی و منابع گرمایی. برخلاف سایر
پیلهای شیمیایی که دارای الکترولیت مایع هستند، در پیلهای حرارتی ، الکترولیت در دمای محیط ، جامد و غیر هادی است، لذا در شرایط معمولی پیل غیر فعال خواهد بود. اما زمانی که الکترولیت به صورت مذاب در آید، یونیزه میشود و
هدایت الکتریکی بسیار زیادی پیدا میکند. ابن عامل باعث میشود تا واکنش الکتروشیمیایی بین آند و کاتد برقرار شود و جریان الکتریکی در پیل تولید گردد. این جریان توسط جمع کنندهها انتقال مییابد. الکترولیت زمانی به صورت مذاب در میآید که تا دمایی بالاتر از نقطه ذوبش گرم شود. این گرما از طریق منابع گرمایی موجود در لابلای پیلها تأمین میشود.
طبقه بندی پیلهای حرارتی
پیلهای حرارتی انواع گوناگونی دارند؛ اما میتوان بطور کلی آنها را به دو دسته پیلهای لیتیومی و پیلهای کلسیومی تقسیم نمود. طیف گستردهای از مواد به منظور ساخت اجزای پیل مورد استفاده قرار میگیرند؛ ولی نحوه انتخاب آنها باید به گونهای باشد که بتواند بر حسب نیاز ، بهترین سطح
ولتاژ و
جریان را تأمین نماید. در پیلهای لیتیومی از لیتیم و ترکیبات آن و در پیلهای کلسیومی از کلسیم و ترکیبات آن برای ساخت قطعات اصلی پیل استفاده میگردد. محدوده ولتاژ قابل تأمین توسط هر پیل در حدود 1.5 تا 3.5 ولت است.
پیلهای لیتیومی
آند
در این پیلها ابتدا از لیتیوم خالص به عنوان آند استفاده میشد؛ اما استفاده از این ماده مشکلاتی را به همراه داشت. لیتیوم خالص بیش از اندازه فعال است و کار کردن با آن آسان نیست. از طرفی دارای نقطه ذوب پایینی است و در دمای 181 درجه سانتیگراد ذوب میشود. در نتیجه در درجه حرارت عملکرد پیل ، به صورت مذاب در میآمد و میتواند به سمت بیرون نشت پیدا کرده و باعث اتصال کوتاه شدن پیل میگردید. به همین دلیل مجبور بودند لیتیوم مذاب را بوسیله یک قطعه اسفنجی مهار نمایند که این کار نیز مشکلاتی را به همراه داشت. لذا دیگر از لیتیوم خالص برای اند استفاده نمی شود، بلکه از آلیاژهای لیتیوم مانند لیتیوم- آلومینیوم و لیتیوم - سیلسیوم برای این منظور استفاده میشود. این کار مزایای زیادی دارد: از جمله اینکه نقطه ذوب را افزایش میدهد. به گونهای که در درجه حرارت عملکرد پیل ، آند میتواند پایداری حرارتی خود را حفظ نماید. از سوی دیگر ساخت و کاربردی کردن آن آسانتر است.
بر طبق نمودار فازی لیتیوم - سیلیسیوم ، با افزایش درصد سیلیسیم در آلیاژ ، نقطه ذوب ترکیب حاصل افزایش مییابد. بهترین حالت به ازای ترکیب 33 درصد لیتیوم و 67 درصد سیلیسیوم بدست میآید که دارای نقطه ذوب 760 درجه است. اما از آنجا که مقدار لیتیوم موجود در این ترکیب کم ایست. برای استفاده به عنوان آند چندان مناسب نیست. برطبق نمودار ، ترکیب 44 درصد لیتیوم و 56 درصد سیلیسیوم مناسبترین آند است؛ چرا که دارای نقطه ذوب 730 درجه است و میزان فعالیت آن نیز به اندازه کافی میباشد.
الکترولیت
بطور معمول از نمکهای هالیدی فلزات قلیایی برای ساخت الکترولیت استفاده میشود. این کار بخاطر قابلیت هدایت الکتریکی بسیار بالای این نمکها در حالت مذاب است. نقطه ذوب هر یک از این نمکها بالاست. در صورتی که الکترولیت باید دارای نقطه ذوب به نسبت پایینی باشد تا تأمین گرمای لازم برای رسیدن به نقطه ذوب آسان باشد. به همین دلیل از ترکیب یوتکتیک دوگانه یا سه گانه این نمکها استفاده میشود. ترکیب یوتکتیک به ترکیبی گفته میشود که کمینه نقطه ذوب را به ازای درصد معینی از اجزای تشکیل دهندهاش دارا باشد. در پیلهای حرارتی بطور معمول از ترکیب یوتکتیک کلریدهای لیتیوم و پتاسیم به عنوان الکترولیت استفاده میشود. نقطه ذوب هر یک از این دو ماده به ترتیب 614 و 790 درجه سانتیگراد است. در حالی که نقطه ذوب ترکیب یوتکتیک آنها برابر با 352 درجه سانتیگراد است.
در درجه حرارت عملکرد پیل ، الکترولیت به صورت مذاب در میآید و ممکن است به بیرون نشت پیدا کند و از آنجا که هادی است، میتواند باعث اتصال کوتاه پیل گردد. به منظور جلوگیری از این پدیده ، مقدار معینی از مادهای که نقطه ذوب بالایی داشته و از لحاظ شیمیایی نیز با اجزای پیل سازگار باشد را بدان میافزایند. بطور معمول از اکسیدهای دیر گداز برای این منظور استفاده میشود. در بیشتر پیلهای لیتیومی اکسید منیزیم بکار برده میشود که در واقع به عنوان یک چسب عمل میکند و در نقطه ذوب الکترولیت ، آن را به صورت خمیری شکل در آورده و از جاری شدن آن جلوگیری میکند.
کاتد
طیف گستردهای از مواد به عنوان کاتد در پیلهای لیتیومی مورد استفاده قرار میگیرند. اما بیشتر از سولفیدهای فلزی نظیر سولفید آهن ، بی سولفید آهن ، سولفید مس و بی سولفید کبالت برای این منظور استفاده میشود. مهمترین مشخصه مواد فعال کاتد این است که دارای پایداری حرارتی باشد تا در دمای عملکرد پیل دچار تجزیه یا تغییر فاز نشود. از این مواد بی سولفید آهن بخاطر خواص الکتروشیمیایی مطلوب ، سهولت دسترسی و ارزان بودن ، بیشتر استفاده میشود. بی سولفید آهن که نام تجارتی آن
پیریت است به دو صورت طبیعی و سنتزی یافت میشود. پیریت طبیعی خلوص بالایی ندارد، اما به روش سنتزی میتوان به درجه خلوص بالای 99 درصد نیز دست یافت که این نوع پیریت را پیریت سنتزی مینامند.
استفاده از پیریت طبیعی به عنوان ماده فعال کاتد در پیلهای حرارتی بطور معمول مشکلاتی را به همراه دارد، زیرا ناخالصیهای موجود در آن ممکن است باعث بروز برخی واکنشهای ناخواسته گردد. به همین دلیل قبل از استفاده باید آن را خالص کرد. برای این منظور دو روش عمده وجود دارد که عبارتند از شناور سازی و استخراج جامد - مایع. ناخالصیهای عمدهای که در پیریت طبیعی ممکن است وجود داشته باشد عبارتند از ناخالصیهای اکسید آهن ، ناخالصیهای اکسید آهن و سولفات آهن از فرآیند لیچینگ با حلال اسید اسید کلریدریک و برای حذف ناخالصیهای اکسیدهای فلزی از فرآیند لیچینگ با حلال اسید فلوئوریدریک استفاده میگردد. در روش شناور سازی از حلال تترابرومو اتان استفاده میشود. با انجام عملیات تخلیص ، درجه خلوص پیریت طبیعی به بالای 99 درصد رسیده و برای استفاده در پیلهای حرارتی آماده میشود.
پیلهای کلسیومی
آند
در این پیلها ، آند از جنس فلز کلسیم خالص است. آند و جمع کننده آن به هم متصل میشوند، که مجموعه این دو را دو فلزی مینامند. برای اتصال آند بر روی جمع کننده و ساخت دو فلزی دو روش عمده وجود دارد. در روش اول که بیشتر بکار میرود. کلسیم به صورت ورق ساخته میشود و سپس به روش نقطه جوش یا سایر روشهای مکانیکی نظیر پرس ، پرچ و غیره به جمع کننده متصل میشود. روش دوم لایه نشانی است. برای لایه نشانی کلسیم بر روی جمع کننده ، از روش تبخیر تحت خلا استفاده میشود.
کاتد و الکترولیت
در پیلهای کلسیومی از موادی نظیر کرومات کلسیم ، کرومات پتاسیم ، دی کرومات پتاسیم ، کرومات سرب و اکسید تنگستن به عنوان مواد فعال کاتد استفاده میشود. از میان مواد یاد شده ، کرومات کلسیم بیشتری مصرف را دارد، اگر چه
هدایت الکتریکی بالایی ندارد. به همین دلیل در پیلهای کلسیومی از الکترولیت مجزا استفاده نمیشود، بلکه ترکیبی از مواد کاتد ، الکترولیت و پیوند دهنده بکار برده میشود که آن را
دی ای بی مینامند. مادهای که به عنوان الکترولیت مصرف میشود. همان ترکیب یوتکتیک کلریدهای لیتیوم و پتاسیم است که در پیلهای لیتیومی نیز بکار برده میشود؛ با این تفاوت که در اینجا به جای پیوند دهنده اکسید منیزیم از سیلکا استفاده میشود. زیرا پیوند دهنده استفاده شده در پیلهای لیتیومی با واکنشهای شیمیایی صورت گرفته در پیلهای کلسیومی سازگار نیست.
شیوه عملکرد
درجه حرارت عملکرد پیل بستگی به نوع الکترولیت استفاده شده دارد. هر قدر الکترولیت مورد استفاده نقطه ذوب پایینتری داشته باشد، پیل زودتر شروع به کار خواهد کرد و زمان فعال شدن آن کوتاهتر خواهد بود. پس از ذوب تا الکترولیت مجموعه واکنشهای الکتروشیمیایی بین آند و کاتد رخ میدهد. این گرما توسط مواد پیروتکتیک اطراف و لابهلای پیلها تأمین میگردد. برای آزاد شدن گرمای ناشی از سوختن این مواد باید یک زنجیره آتش فعال گردد. برای این منظور ابتدا با اعمال یک پالس الکتریکی یا مکانیکی چاشنیهای باتری فعال میشود و مواد پیروتکنیکی موجود در اطراف پیلها بر اثر آن میسوزند. این مواد که دارای سرعت سوزش بالایی هستند، سبب فعال شدن منابع گرمایی موجود در لابهلای پیلها میشوند. گرمای ناشی از اشتغال این منابع به گونهای محاسبه میگردد که بتواند عملکرد باتری را برای مدت زمان مورد نیاز تضمین نماید.
ساخت پیل
برای ساخت پیل از فناوری
پیلهای نازک استفاده میشود. مطابق این روش هر یک از مواد مربوط به اجزای پیل به صورت یک قرص با ابعاد مورد نیاز و ضخامت کم ساخته میشوند. با توجه به اینکه سطح ولتاژ پیلهای کلسیومی به میزان 0.5 ولت بالاتر از پیلهای لیتیومی است، لذا سامانه لیتیومی نیاز به تعداد پیلهای بیشتری دارد تا بتواند سطح ولتاژ معینی را تولید نماید. از سوی دیگر در سامانه لیتیومی ، برخلاف سامانه کلسیومی ، باید یک لایه جدا کننده بین آند و کاتد بکار رود تا از واکنش مستقیم بین این دو و در نتیجه اتصال کوتاه شدن پیل جلوگیری نماید. به همین دلیل ضخامت پیلهای لیتیومی افزایش مییابد. لذا استفاده از فناوری پیلهای نازک میتواند امکان تولید پیل با کمترین ابعاد را فراهم سازد.
در این روش مواد اولیه که به صورت یک پودر با دانه بندی معین هستند، بوسیله روش پرس سرد به قرصهایی با ابعاد مورد نیاز تبدیل میشوند. در روشهای پیشرفتهتر از پرسهای هیدرولیک برای این منظور استفاده میشود. قالب مورد استفاده برای ساخت هر یک از اجزای پیل بر مبنای ابعاد قرصها طراحی میشوند. فشار اعمال شده برای پرس قرصها باید متناسب با ضخامت قرص و چگالی ظاهری آن باشد. پس از ساخت قرصها ، با اتصال آنها میتوان به یک پیل واحد دست یافت.
آزمایش پیل
پس از ساخت پیل ، برای پی بردن به نحوه رفتار تخلیه آن و نیز برای اطمینان از عملکرد صحیح مواد شیمیایی و فرمولاسیون آنها و فرآیند آماده سازی ، لازم است نسبت به آزمایش پیل اقدام شود. در صورتی که نتیجه آزمایش مثبت باشد، فرآیند ساخت مورد تأیید خواهد بود، در غیر این صورت باید تمامی مراحل ساخت و آماده سازی مورد بررسی قرار گیرد تا مشکل رفع گردد. برای آزمایش پیل ، روشهای متعددی وجود دارد؛ اما بهترین روش زمانی بدست میآید که تعداد متغیرهای مؤثر کمینه گردد. متغیرهایی که میتوانند بر روی جریان خروجی پیل تأثیر داشته باشند عبارتند از:
میزان فشار روی پیل ،
دمای مرکز پیل ،
مدت زمان جریان کشی ،
شدت افزایشی دما ،
شدت افت گرما ،
مقدار مقاومت بار موجود در سر راه پیل ،
دقت تجهیزات بکار رفته ،
دقت کاربر و غیره.
جمع بندی
پیلهای حرارتی به علت دارا بودن ویژگیهای منحصر به فرد و داشتن مزیتهای فراوان نسبت به سایر
پیلهای الکتروشیمیایی ، مناسبترین عامل تولید کننده
جریان الکتریکی برای کاربردهای نظامی میباشند. از سوی دیگر به علت وجود پیچیدگیها و ظرافتهای خاص ، ساخت این نوع پیلها بسادگی امکان پذیر نیست. کلیه مراحل عمل سنتز مواد اولیه ، ساخت اجزای پیل ، اتصال و آزمایش پیل دارای ارزش و اهمیت زیادی است تا فرآیند تولید پیل از درصد باتریهای حرارتی را تشکیل میدهند. این باتریها در طیف گستردهای از کاربردهای نظامی نظیر
موشکها ،
بمبها ،
هواپیماها ، سامانههای اضطراری و حتی
ماهوارهها و
سفینههای فضایی مورد استفاده واقع میشوند.
مباحث مرتبط با عنوان
مراجع
- Richard w.Bild, “Analysis of oxygen in Li-Si alloys”,IEEE transactions on nuclear science. Vol.NS-28,No.2,April 1981.
- Chiaki Iwakura, Noriyuki Isobe.Hideo Tamura,”Preparation of iron disulfide and it,s use for Iithium batterie,s”,Osaka university, japan,1982.
- Steven Dallek,”Kinetics and purity of thermal battery materials”,Naval Surface Weapons Center,MD 20903-50000.
- Praful V.Dand,K.K.Press,G.R.Wisniewski,”Studies on Ca & Li systems for thermal battery application”, KDISCORE,Inc, Cockeysville,Maryland,U.S.A.
- Clifford G Wagner,David Jacobs,”Thin cell thermal battery development”,General Electric Company,florida 33540.
- Alan Arthur Schneider,George C.Bowser,”Thermal battery having iron pyrite depolarizer”,U.S.Patent No.4,119,769,Oct.10,1978.
- Robert P.Clark,Kenneth R.Grothans,”Thermal battery having protectively coated calcium anode”, U.S.Patent No.3,527,615,Sep.8,1970.
- T.L.asloge,E.E.Hellstrom,”Molticomponent phase diagram for battery applications”.Sandia National Laboratiories.