منو
 صفحه های تصادفی
Net framework.
دانشنامه:فرم تاییدیه
امپراتوری اسپانیا
فلاسفه اسلامی
تترادینام
امام علی علیه السلام و افشای راز فرو ریختن بنای مسجد
تابع(المپیاد)
تاریخ ایران
روم اپیکوری
‎آنتیموان
 کاربر Online
558 کاربر online

مکانیک لاگرانژی

تازه کردن چاپ
علوم طبیعت > فیزیک > فیزیک کلاسیک > مکانیک کلاسیک > مکانیک تحلیلی
(cached)

اطلاعات اولیه

کاربرد مستقیم قوانین حرکت نیوتن برای حرکت سیستم‌های ساده راحت و آسان است. اما در صورتی که تعداد ذرات سیستم بیشتر شود، در این صورت استفاده از قوانین نیوتن کار دشواری خواهد بود. در این حالت از یک روش عمومی ، پیچیده و بسیار دقیق که به همت ریاضیدان فرانسوی ژوزف لویی لاگرانژ ابداع شده است، استفاده می‌شود. به این ترتیب می‌توان معادلات حرکت برای تمام سیستمهای دینامیکی را پیدا کرد. این روش چون نسبت به معادلات نیوتن حالت کلی تری دارد، لذا در مورد حالتهای ساده که با معادلات حرکت نیوتن به راحتی حل می‌شود، نیز قابل اعمال است.

مختصات تعمیم یافته

موقعیت یک ذره در فضا را می‌توان با سه سیستم مختصات مشخص کرد. این سیستمها عبارتند از سیستمهای کارتزین ، کروی و استوانه‌ای ، یا در حقیقت هر سه پارامتر مناسب دیگری که انتخاب شده باشند. اگر ذره مجبور به حرکت در یک صفحه یا سطح ثابت باشد فقط به دو مختصه برای مشخص کردن موقغیت ذره نیاز است، در حالیکه اگر ذره روی یک خط مستقیم یا یک منحنی ثابت حرکت کند، ذکر یک مختصه کافی خواهد بود. اما در مورد یک سیستم متشکل از N ذره ، برای تشخیص کامل موقعیت همزمان تمام ذرات به 3N مختصه نیاز خواهیم داشت.

اگر محدودیتهای بر سیستم اعمال شده باشد، تعداد مختصات لازم برای مشخص کردن پیکربندی کمتر از 3N خواهد بود. به عنوان مثال ، اگر سیستم مورد نظر یک جسم صلب باشد، برای مشخص کردن پیکربندی آن فقط به موقعیت مکانی یک نقطه مرجع مناسب از جسم (مثلا مرکز جرم) و جهت یابی آن نقطه در فضا احتیاج داریم. بنابراین در حالت کلی برای مشخص کردن پیکربندی یک سیستم خاص ، احتیاج به تعداد حداقل معین n مختصه نیاز است. این مختصات را مختصات تعمیم یافته می‌گویند.

نیروی تعمیم یافته

در سیستم مختصات تعمیم یافته ، به جای نیروهایی که در مکانیک کلاسیک نیوتنی معمول است، مرتبط با هر مختصه نیرویی تعریف می‌شود که به نام نیروی تعمیم یافته معروف است. این کمیت که با استفاده از تعریف کار محاسبه می‌شود، به این صورت است که حاصل ضرب آن در مختصه تعمیم یافته دارای ابعاد کار است. بنابراین اگر مختصه تعمیم یافته دارای بعد فاصله باشد در این صورت این کمیت از جنس نیرو خواهد بود. در صورتیکه مختصه تعمیم یافته از نوع زاویه باشد، در این صورت این کمیت دارای بعد گشتاور خواهد بود. یعنی متناسب با نوع مختصه تصمیم یافته می‌تواند از جنس نیرو و یا گشتاور نیرو باشد.

معادلات لاگرانژ

برای بررسی حرکت یک سیستم در مکانیک لاگرانژی انرژی جبنشی و انرژی پتانسیل سیستم را تعیین می‌کنند. این کار به این صورت می‌گیرد که در مکانیک لاگرانژین در مورد هر سیستم دو کمیت جدید به نام‌های لاگرانژین و هامیلتونین تعریف می‌شود. لاگرانژین برابر تفاضل انرژی پتانسیل از انرژی جنبشی است. در صورتی که هامیلتون برابر با مجموع انرژی جنبشی و انرژی پتانسیل سیستم است. در واقع می‌توان گفت که کار اصلی تعیین و محاسبه صحیح انرژی جنبشی و پتانسیل است.

سپس این مقادیر در معادله‌ای که به معادله لاگرانژ حرکت معروف است قرار داده می‌شود. معادله لاگرانژ ، معادله‌ای است که بر حسب مشتقات تابع لاگرانژی نسبت به مختصات تعمیم یافته و نیز مشتق زمانی مشتقات تابع لاگرانژی نسبت به سرعتهای تعمیم یافته نوشته شده است. به عبارت دیگر اگر تابع لاگرانژی را با L نشان دهیم و مختصات تعمیم یافته را با qk و سرعت‌های تعمیم یافته را با qk (که نقطه بیانگر مشتق زمانی مختصه تعمیم یافته qk است) نشان دهیم، معادلات لاگرانژ به صورت زیر خواهد بود:
در صورتی که نیروهای موجود در سیستم همگی پایستار نباشند، به عنوان مثال یک نیروی غیر پایستار مانند اصطکاک وجود داشته باشد در این صورت در طرف دوم معادلات لاگرانژ عبارت Qk که بیانگر نیروی تعمیم یافته غیر پایستار است، نیز اضافه می‌شود.

معادلات لاگرانژ برای تمام مختصات یکسان هستند. این معادلات ، روش یک نواختی برای بدست آوردن معادلات دیفرانسیل حرکت یک سیستم در انواع سیستم‌های ارائه خواهند داد.

اصل تغییرات هامیلتون

روش دیگر برای استنتاج معادلات لاگرانژ اصل تغییرات هامیلتونی است. در این حالت همانگونه که قبلا نیز اشاره شد در مورد هر سیستم کمیتی به نام تابع هامیلتونی تعریف می‌شود که برابر با مجموع انرژی جنبشی و انرژی پتانسیل سیستم است. این اصل در سال 1834 توسط ریاضیدان اپرلندی ویلیام .ر. هامیلتون ارائه شد.

در این روش فرض می‌شود که یک تابع پتانسیل وجود دارد، یعنی سیستم تحت بررسی یک سیستم پایاست. ولی اگر تعدادی از نیروها نیز غیر پایستار باشد مانند مورد معادلات لاگرانژ می‌توان سهم این نیرو ها را نیز بطور جداگانه منظور کرد. یعنی در این حالت تابع هامیلتون برابر با مجموع انرژی جنبشی و کار انجام شده توسط تمام نیروها اعم از نیروهای پایستار و غیر پایستار است.

معادلات هامیلتون

معدلات هامیلتون از 2n معادله دیفرانسیل درجه اول تشکیل شده است. این معادلات بر حسب اندازه حرکت تعمیم یافته و مشتقات آن نوشته می‌شود. اندازه حرکت تعمیم یافته به صورت مشتقات تابع لاگرانژی نسبیت به سرعت تعمیم یافته تعریف می‌شود. بنابراین این معادلات زیر خواهند بود.


در عبارت فوق qk بیانگر سرعت تعمیم یافته است و علامت نقطه در بالای Pk (اندازه حرکت تعمیم یافته) بیانگر مشتق زمانی است. اگر معادلات هامیلتون را با معادلات لاگرانژی مقیسه کنیم ملاحظه می‌شود که تعداد اولین معادلات زیاد است. یعنی اگر سیستم V با N مختصه یافته مشخص شود، در این صورت معادلات هامیلتون شامل 2n معادله دیفرانسیل درجه اول هستند، در صورتیکه معادلات لاگرانژ از n معادله درجه دوم تشکیل شده است. بنابراین کار کردن با معادلات هامیلتون راحتتر است. معمولا در مکانیک کوانتومی‌ و مکانیک کاری از معادلات هامیلتون استفاده می‌شود.

مباحث مرتبط با عنوان




تعداد بازدید ها: 66922


ارسال توضیح جدید
الزامی
big grin confused جالب cry eek evil فریاد اخم خبر lol عصبانی mr green خنثی سوال razz redface rolleyes غمگین smile surprised twisted چشمک arrow



از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..