منو
 صفحه های تصادفی
اثر کامپتون
رشته دانشگاهی مهندسی مکانیک
سوخوی 24
مسعود بن حجاج و شهادت در کربلا
امام علی علیه السلام و بزرگواری با خائن
مسئول قراردادها
چگونه تاریخ فلسفه را مطالعه کنیم؟
گراف چرخ
گالیم
لیوانی که هر آنچه در آن بریزید جا می‌گیرد!
 کاربر Online
355 کاربر online

قوانین اسنل دکارت

تازه کردن چاپ
علوم طبیعت > فیزیک > اپتیک
علوم طبیعت > فیزیک > الکتریسیته و مغناطیس > امواج
(cached)

مقدمه

در بسیاری از پدیده‌های نور شناختی ، موج به سطح جدا کننده دو محیط شفاف مانند آب ، هوا ، شیشه و … برخورد می‌‌کند. اگر سطح جدا کننده صاف باشد (یعنی ناصافی آن در مقاسه با طول موج موج تابشی کوچک باشد) معمولا بخشی از موج منتقل شده و بخش دیگر بازتاب پیدا می‌‌کند. به عنوان مثال ، وقتی در خیابان به شیشه مغازه‌ای نگاه می‌‌کنید، تصویر کمرنگی از خیابان را در آن می‌‌بینید. در عین حال مردی را هم در داخل مغازه در حال قدم زدن است، مشاهده می‌‌کنید.

از نظر هندسی مسیر حرکت موج را در محیطها با خطوطی نشان می‌‌دهیم که اصطلاحا به آنها پرتو می‌‌گویند. حال در مورد چگونگی بازتاب و شکست امواج در مرز دو محیط ، قوانین و مقررات خاصی وجود دارد که با نتایج تجربی کاملا وفق دارند. این مجموعه مقررات تحت عنوان قوانین اسنل و دکارت معروف هستند.

شرح قوانین اسنل _ دکارت

در سطح جدا کننده دو محیط ، جهت و امتداد پرتوهای فرودی ، بازتابیده (بازتاب نور) و شکسته (شکست نور) را به کمک زاویه‌هایی که این پرتوها با خط عمود بر سطح می‌‌سازند، مشخص می‌‌کنند. برای این منظور فقط رسم یک پرتو کافی است. آزمایش بر روی باریکه‌های فرودی ، بازتابیده و شکست به نتایج زیر منجر شده‌اند:


  • پرتوهای تابشی (فرودی) ، بازتابیده ، شکسته و خط عمود بر سطح جدا کننده دو محیط همگی در یک صفحه قرار دارند. لذا اگر پرتو تابشی در صفحه تصویر و سطح مرزی دو محیط بر صفحه تصویر عمود باشند، پرتوهای بازتابیده و شکسته نیز در همان صفحه تصویر خواهند بود.

  • زاویه بازتاب (زاویه‌ای که پرتو بازتاب با خط عمود بر سطح جدا کننده دو محیط می‌‌سازد) با زاویه تابش (زاویه بین پرتو فرودی و خط عمود بر سطح جدا کننده دو محیط) برای هر موج دلخواه و در هر دو محیط دلخواه برابر است.

  • در مورد یک نور تکفام (نوری که فقط شامل یک فرکانس است) و دو محیط معین که در دو طرف سطح جدا کننده قرار دارند، نسبت سینوس زاویه تابش و سینوس زاویه شکست (زاویه‌ای که پرتو شکسته شده با خط عمود بر سطح جدا کننده دو محیط می‌‌سازد) مقداری ثابت است. به بیان دیگر ، اگر زاویه تابش را با 1_Ф و زاویه شکست را با 2_Ф نشان دهیم، قانون سوم به صورت زیر بیان می‌‌شود:



    گاهی اوقات دو قانون اول را قانون بازتاب نیز می‌‌گویند.

ویژگی‌های قوانین اسنل _ دکارت

قوانین اسنل _ دکارت فقط در مورد امتداد و جهت پرتوها بیان شده‌اند و به شدت‌های بازتابشی و شکست ارتباطی ندارند، البته لازم به ذکر است که شدت بازتاب یا شکست به زاویه تابش و شکست بستگی دارد. به عنوان مثال ، در حالت تابش عمودی یعنی حالتی که زاویه تابش برابر صفر درجه است، شدت بازتاب کمترین مقدار خود را دارد و در حالتی که زاویه تابش برابر نود درجه باشد، شدت بازتابش صددرصد است.

اگر چنانچه جای پرتوها را عوض کنیم، یعنی پرتو فرودی از محیط دوم بر فصل مشترک دو محیط بتابد و پرتو شکست در محیط اول باشد، باز هم قوانین اسنل _ دکارت برقرار خواهند بود. لذا اگر محیط اول را a و محیط دوم را b بگیریم، می‌‌توان گفت که قوانین بازتابش و شکست اسنل _ دکارت ، اعم از اینکه پرتو تابش درون محیط a باشد یا b ، همواره صادق هستند. عبور نور از یک ماده به ماده دیگر پدیده‌ای برگشت پذیر است، یعنی مسیر رفتن از a به b با مسیر رفتن از b به a یکی است.

ضریب شکست

فرض کنید باریکه تکفامی ‌در خلا منتشر شده و به سطح مرزی جسم a برسد و زاویه آن با خط عمود بر سطح مرزی دو محیط Ф_0 باشد. بعد از وارد شدن پرتو به محیط a زاویه آن با خط عمود مذکور ، یعنی زاویه شکست ، Ф_a می‌‌شود (a همان محیط دوم است و محیط اول را خلا گرفته‌ایم) در این صورت ثابت مذکور در قانون اسنل _ دکارت را ضریب شکست محیط a نامیده و با n_a نشان می‌‌دهیم. به بیان دیگر داریم:



اگر چنانچه محیط اول خلا نباشد، یعنی محیط اول را a گرفته و ضریب شکست آن را با n_a نشان دهیم و محیط دوم را b گرفته، ضریب شکست آن را با n_b نشان دهیم، در این صورت ، با استفاده از چند معادله ریاضی می‌‌توان ثابت کرد که :


مباحث مرتبط با عنوان


تعداد بازدید ها: 32454


ارسال توضیح جدید
الزامی
big grin confused جالب cry eek evil فریاد اخم خبر lol عصبانی mr green خنثی سوال razz redface rolleyes غمگین smile surprised twisted چشمک arrow



از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..