منو
 کاربر Online
351 کاربر online

اعداد اول دوقلو

تازه کردن چاپ
علوم ریاضی > ریاضی > شاخه های ریاضی > ریاضی محض
(cached)




بسیاری از عددهای اول به صورت جفتهایی به شکل p و p+2 هستند، مانند 3و5 ، 11و13 ، 29و31 . گمان می‌رود تعداد این گونه جفتها نامتناهی باشد ولی تا کنون هیچ گام قطعی در راه اثبات این موضوع برداشته نشده است.
برون در 1919 اثبات کرد که بینهایت عدد p موجود است به طوری که هم p و هم p+2 حاصل‌ضرب حداکثر 9 عدد اولند. این اثبات توسط سایر ریاضی‌دانان پیشرفت کرد به طوری که در 1924 ، رادماخر عدد برون را از 9 به 7 کاهش داد. در 1930 بوخشتاب این تعداد را به 6 و در 1938 به 5 رساند. ونگ با مفروض دانستن صورت تعمیم یافته‌ی فرضیه ریمان در 1962 نشان داد که بی‌نهایت عدد اول p موجود است به قسمی که p+2 حاصل‌ضرب حداکثر 3 عدد اول است. با این حال بوخشتاب در 1965 و بدون در نظر گرفتن صحت فرضیه ریمان توانست اثبات کند که به ازای عدد c ثابتی ، بی‌نهایت عدد اول p موجود است به قسمی که p+2 حاصل‌ضرب حداکثر c عدد اول است.چن در مقاله‌ای که در 1973 منتشر گردید اثبات کرد که عدد c=2 برای اثبات بوخشتاب کفایت می‌کند.

سی و پنج جفت ابتدایی اعداد اول دوقلو:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619), (641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

قضیه

m و m+2 اعداد اول دوقلو هستند اگر و تنها اگر :



هم‌چنین بببنید:


پیوندهای خارجی

اعداد اول دوقلو
اعداد اول دوقلو و ثابت برون
en.wikipedia.org

منابع
  • ریاضیات چیست؟/ ریچارد کورانت ، هربرت رابینز ؛ ترجمه سیامک کاظمی _ تهران : نشر نی ، 1379.
  • en.wikipedia.org


تعداد بازدید ها: 64271


ارسال توضیح جدید
الزامی
big grin confused جالب cry eek evil فریاد اخم خبر lol عصبانی mr green خنثی سوال razz redface rolleyes غمگین smile surprised twisted چشمک arrow



از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..