ماهیت نور همدوس لیزر






مقدمه

عمل لیزرها بستگی به گسیل القایی دارد. که بوسیله ضریب انیشتین B21 مشخص می شود. میزر ‏به معنی تقویت کهموج بوسیله گسیل القایی تابش است و لیزر به همان معنی برای نور است. ‏میزرها مدتی قبل از لیزرها بوجود آمدند. علت عمده اینکه ، اتلاف انرژی حاصل از فرآیند رقیب گسیل خود به خودی در طول موجهای بلند خیلی کمتر است (A21.B21 = V3).‏

مجموعه‌ای از اتمها یا مولکولها با ترازهای انرژی (1) و (2) را در نظر می‌گیریم که تحت ‏تابش نوری به فرکانس V12 قرار گرفته‌اند. هر اتم در حالت (1) دارای احتمال در واحد زمان (B12P (V12 برای اضافه کردن یک فوتون و در نتیجه تضعیف نور است در حالی که هر اتم حالت (2) دارای ‏احتمال (B12P(V12 برای اضافه کردن یک فوتون و در نتیجه تقویت نور است.‏



تصویر

مکانیزم تابش همدوس لیزری

سرشتیهای تابش لیزر بطور کامل از این واقعیت ناشی می‌شود که تابش گسیل شده دقیقا دارای ‏همان فاز و جهت تابش القایی است. به عبارتی اگر تقویت بر تضعیف فزونی یابد اتمهای بسیاری را ‏می‌توان وادار به تابش همدوس کرد. در حالتهای عادی ، تعداد اتمها در حالت (1) بیشتر از اتمهای حالت (2) هستند. بطوری که در تعادل گرمایی ، جذب با ضرب e-hv/KT که گسیل القایی غالب می‌آید. برای بدست آوردن تقویتی خالص باید تجمع معکوس گردد.

این کار ، به هر میزانی ، در ناحیه مرئی ، به تنهایی کافی نیست. زیرا تعداد زیادی از اتمهای ‏برانگیخته بطور خود به خودی یعنی غیر همدوس فرو می‌افتند و از نقطه نظر تقویت همدوس تلف ‏می‌شوند. برای جبران کردن این اتلاف ، تقویت همدوس را ، با در برگرفتن تابش یک در حفره تشدید ‏کوک شده به فرکانس V12 ، می‌افزایند. در نواحی مرئی و فرو سرخ یک چنین حفره‌ای زوج آینه ‏موازی با ضریب انعکاس بالا ، هر کدام واقع در یک انتهای ماده مورد تجمع معکوس حاصل می‌شود.‏


امواج ایستاده حاصل از انعکاسات متعدد بین دو انتهای این حفره دامنه‌ای به مراتب بیشتر از امواج ‏متحرکی دارند که تنها عبور ساده‌ای از درون ماده را ارائه می‌کنند. از آنجایی که حفره برای نور ‏دقیقا عمود بر آینه تنظیم شده است. لذا باریکه فرودی از انتهای آینه (یکی از آینه‌ها کمی قابلیت ‏عبور دارد) به شدت جهت دار است.

عوامل اتلاف تابش لیزری

پاشندگی را می‌توان تا حد ده سانتیمتر در هر کیلومتر کوچک کرد. علاوه بر آن چون رفتار تابش ‏طوری است که گویی از یک نوسانگر غیر میرای تنها ، بجای تعداد زیادی نوسانگر نامربوط به هم ‏، منشأ گرفته است. لذا ناشی از جابه جایی دوپلر یا فشار ، یا حتی ناشی از طول عمر طبیعی ، هیچ ‏پاشندگی فرکانسی بوجود نمی‌آید. بنابرین نوار طول موج می‌تواند فوق العاده باریک باشد و ‏محدودیت آن اساسا توسط پارازیتهای گرمایی یا پایداری حفره تشدید معین می‌شود.

برای یک لیزر گازی ν/ν∆ که معرف پاشندگی نوری لیزر می‌باشد، ممکن است از مرتبه 14-10 ‏باشد. که همان مرتبه افت و خیز گرمایی و مکانیکی آینه است. این را می‌توان با حد دوپلر عادی که ‏حدود 6-10 است، مقایسه کرد. این چگالش انرژی چه از نظر فضایی و چه طیفی علت اصلی شدت ‏زیاد میزرها و لیزرهاست.

در اکثر موارد انرژی به صورت تپه‌هایی به طول عمر چند میکرو ثانیه یا کمتر گسیل می‌شود، یعنی ‏چگالش نیز زود گذر است. قدرت قله‌ای تابش حاصل از یک لیزر یاقوت چند مگاواتی چیزی حدود 1012 مرتبه بیشتر از قدرت تابش خورشید در همان زاویه باریک فضایی و نوار فرکانسی است. اما این ‏تپه فقط -710 ثانیه عمر دارد. از طرق مختلف دستیابی به تجمع معکوس در اینجا بحث نخواهد شد، ‏زیرا تعداد کتابهای قابل دسترس در این زمینه بسیار زیاد است.



تصویر

پمپاژ لیزر

اصل عمومی ، عبارت از انتخاب یک تراز فرا پایدار (2) و تجمع آن از طریق فروافت از تراز بالاتر ‏‏(3) است که خود بوسیله جذب تابش به طول موجهای کوتاه تر ، از حالت پایه به آن حالت رسیده ‏است، این فرآیند به پمپاژ نوری (1) موسوم است. بطور مثال ، در لیزر یاقوت نور قرمز 6943 ‏آنگستروم از طریق فرو افت اتمهای ناخالص کرومیوم از یک تراز فرا پایدار (2) به حالت پایه (1) بوجود می‌آید.

روش دیگر پمپاژ نوری بوسیله لیزر گازی هلیوم - نئون نشان داده شده است. از آنجایی که تمام ‏ترازها تیزند. لذا انرژی فقط می‌تواند در نوارهای بسیار باریک فرکانس جذب شود و برانگیزش ‏توسط درخشی از تابش پیوسته بسیار نامؤثر خواهد بود. در عوض تراز (2) در نئون از طریق ‏برخورد با اتمهای هلیوم فرا پایدار به همان انرژی ، حاصل از یک تخلیه الکتریکی مداوم تجمع می‌یابد. گذار لیزری (1) <--- (2) به حالت پایه پایان نمی‌یابد. بنابراین تراز (1) تجمع نسبتا کوچکی دارد ‏و عمل معکوس کردن تجمع می‌تواند بدون فرا پایدار شدن تراز (2) تحقق پذیرد. در واقع هر دو ‏تراز (1) و (2) به زیر ترازهای متعددی شکافته می‌شوند. در این فرآیند خطوط متعدد فروسرخ و لیزر با نور قرمز ایجاد می‌شود.

لیزر پالسی
‏برخلاف آنچه در حالت جامد انتظار می‌رود تراز (2) به جای نوار ، یک تراز تیز است، زیرا تراز پر ‏3d یون کرومیوم توسط الکترونهای خارجی از تأثیر میدانهای بلور محفوظ می‌ماند. این تراز بوسیله گدازهای غیر تابشی از نوار عریض (3) تجمع می‌یابد، در این حالت انرژی به شبکه کریستالی ‏منتقل می شود. درخشی از تابش پیوسته برای برانگیختن اتمها به تراز (3) بکار می‌رود. به علت ‏برانگیزش درخشی و نیاز به اتلاف انرژی شبکه ، این لیزر به صورت تپش کار می‌کند. بازتابهای ‏متعدد به صیقل کردن و نقره اندود کردن سطوح انتهایی خود یاقوت حاصل می‌شود.

طیف نمایی با لیزرها و میزرها

  • گونه‌های وسیعی از میزرها و لیزرهای گازی و جامد تا کنون ساخته و پرداخته شده‌اند که تمامی ‏ناحیه طیفی از کهموج تا فرابنفش نزدیک را ، هر چند عموما در فرکانسهای ثابت معینی ، در بر می‌‏گیرند.

  • ایجاد لیزرها برای ناحیه فرابنفش دور موضوع به مراتب مشکلتری است. زیرا در فرکانسهای بالا ‏گسیل خود به خودی و اتلاف از طریق بازتاب به سرعت افزایش می‌یابند.

  • تا این اواخر استفاده از لیزرها در طیف نمایی به علت عدم قابلیت کوک آنها به فرکانسهای دلخواه ‏، محدود بود و معمولا بطور تصادفی می‌شد از یک منبع با فرکانس ثابت برای تجربه معین استفاده ‏کرد.

  • طیف نمایی رامان یک استثناء در این مورد است: طول موج تابش فرودی می‌تواند کاملا دلخواه ‏انتخاب شود و شدت زیاد لیزر بطور قابل توجهی مشکلات ناشی از ضعیف بودن خطوط رامان را ‏کاهش می‌دهد.

کاربردهای نور همدوس لیزر

  • برای سایر شاخه های طیف نمایی توسعه لیزرهای رنگین دورنمای هیجان انگیزی را عرضه می ‏دارد. لیزرهای رنگین در گستره وسیعی از طول موجها نور تاباند، و تقویت در هر طول موج دلخواه ‏از نور مرئی تا فروسرخ را می توان با انتخاب یک رنگ مناسب و جدا کردن نوار موجی مورد نیازاز ‏طریق توری پراش تا تداخل سنج بدست آورد.

  • از طریق روش دو برابر کردن فرکانس می‌توان گستره طول موج را به ناحیه فرابنفش گسترش داد. ‏با بکار بردن یک لیزر رنگین کوک پذیر به عنوان منبع پایه برای طیف نمایی جذبی می‌توان از یک ‏طیف نگار متعارف صرف نظر کرد.

  • شدت یک لیزر رنگین را می‌توان به آسانی تا حدی بزرگ کرد که بتواند تجمع هر حالت ‏برانگیخته شده مناسبی را ، که از طریق یک گذار تابشی از حالت اساسی بدست می‌آید، اشباع ‏کند. این بدان معنی است که می‌توان تجمع حالت پایه و حالت برانگیخته شده را واقعا با همدیگر ‏برابر کرد. در این صورت می‌توان اثرهای گوناگونی را در حالت برانگیخته نظیر جذب به حالتی ‏باز هم بالاتر ، فرآیندهای فرو پاشی برخوردی و تابشی و انتقال انرژی برانگیختگی به حالتهای مجاور را مورد بررسی قرار داد.

  • باید اضافه کرد که لیزرها وسیله‌ای فوق العاده مفید در یک آزمایشگاه طیف نمایی برای کارهای ‏ساده ولی اساسی نظیر تنظیم طیف نگارها ، میزان کردن تداخل سنجها و بدست آوردن شکلهای خطی ، دستگاههای مفیدی هستند.

  • از لیزرها بطور وسیعی در طیف سنج پلاسما به عنوان وسایل تشخیص برای اندازه گیری ‏مستقیم دما و چگالی الکترونی استفاده می‌شود.‏

مباحث مرتبط با عنوان


تعداد بازدید ها: 40071