قضیه اعداد اول


در جستجو برای یافتن قانون حاکم بر توزیع عددهای اول، گام مهم و اساسی زمانی برداشته شد که ریاضیدانان از تلاش بی‌ثمر برای یافتن فرمول ریاضی ساده‌ای که همه اعداد اول یا تعداد دقیق عددهای اول در میان عدد صحیح نخست را به دست دهد دست برداشتند، و به جای آن در جستجوی اطلاعات درباره متوسط توزیع عددهای اول در میان عددهای صحیح برآمدند.
فرض کنید به ازای هر عدد صحیح تعداد عددهای اول در میان اعداد صحیح 1، 2، 3، ...، را با نمایش دهیم. اگر زیر اعداد اول در دنباله مرکب از چند عدد صحیح نخست خط بکشیم، می‌توانیم چند مقدار اولیه را محاسبه کنیم:


حال اگر دنباله دلخواهی از مقادیر را در نظر بگیریم که به طور نامحدود افزایش یابد، مثلاً



آنگاه مقادیر متناظر :

نیز به طور نامحدود (هر چند با سرعت کمتر) افزایش می‌یابند. از آنجا که می‌دانیم بینهایت عدد اول وجود دارد، مقادیر هم دیر یا زود از هر عدد متناهی تجاوز خواهند کرد. «چگالی» عددهای اول در میان عدد صحیح نخست با نسبت مشخص می‌شود و با استفاده از یک جدول اعداد اول، مقادیر را می‌توان به طور تجربی به ازای مقادیر نسبتاً بزرگ محاسبه کرد.

0/168
0/078498
0/050847478
.......... ...

می‌توان گفت که درایه آخر جدول بیانگر احتمال آن است که عدد صحیحی که به تصادف از میان عدد صحیح نخست انتخاب شده، اول باشد زیرا انتخاب ممکن وجود دارد که از آنها اول‌اند.
توزیع عددهای اول در میان اعداد صحیح فوق‌العاده بی‌نظم است. ولی این بی‌نظمی «در مقیاس کوچک»، از میان می‌رود به شرط اینکه توجه خود را به متوسط توزیع عددهای اول که با نسبت مشخص می‌شود معطوف کنیم. کشف قانون ساده‌ای که رفتار این نسبت از آن تبعیت می‌کند یکی از برجسته‌ترین اکتشافات در تمام ریاضیات است. گاوس از بررسی تجربی جدولهای اعداد اول دریافت که نسبت تقریباً برابر است و این تقریب با افزایش ظاهراً بهتر می‌شود. میزان خوبی تقریب با نسبت مشخص می‌شود که مقدارهایش به ازای =1000، =1000000 و =1000000000 در جدول زیر نشان داده شده‌اند.

1/59 0/145 0/168
1/084 0/072382 0/78498
1/053 0/048254942 0/050847478
... ... ... ...



گاوس براساس این گونه شواهد تجربی حدس زد که نسبت «به طور مجانبی» برابر با است. منظور از این گفته آن است که اگر دنباله‌ای از مقادیر را که مرتباً بزرگ و بزرگتر می‌شوند، مثلاً همان دنباله


را در نظر بگیریم، آنگاه نسبت به ، یعنی عدد

که به ازای همین مقادیر متوالی محاسبه شود، به 1 نزدیک و نزدیکتر خواهد شد، و اختلاف این نسبت با 1 می‌توان با محدود کردن به مقادیر به اندازه کافی بزرگ، به قدر دلخواه کوچک کرد. این مطلب به صورت نمادین با علامت ~ بیان می‌شود:
به این معنی است که وقتی افزایش می‌یابد، به 1 میل می‌کند.
با توجه به اینکه همیشه عددی صحیح است ولی چنین نیست، روشن می‌شود که چرا نمی‌توان علامت معمولی تساوی، =، را به جای ~ قرار داد.
این موضوع که چگونگی توزیع میانگین اعداد اول را می‌توان به وسیله تابع لگاریتمی توصیف کرد، کشف بسیار جالبی است زیرا شگفت‌آور است که دو مفهوم ریاضی که این قدر نامرتبط به نظر می‌رسند، در واقع چنین ارتباط نزدیکی با هم دارند.
اگر چه فهم صورت حدس گاوس آسان است، اثبات ریاضی دقیق آن بسیار دور از حدود امکانات علوم ریاضی در زمان گاوس بود. برای اثبات این قضیه، که فقط با ابتدایی‌ترین مفاهیم سروکار دارد، استفاده از قویترین روشهای ریاضیات نوین لازم است. تقریباً صدسال طول کشید تا آنالیز به درجه‌ای تکامل یافت که آدامار (1896) در پاریس و دلاواله پوسن در لوون (1896) توانستند اثبات کاملی از قضیه اعداد اول به دست دهند. من گولت و لاندوا صورتهای ساده شده و اصلاح شده مهمی از استدلال را عرضه کردند. مدتها قبل از آدامار، تحقیق پیشگامانه خطوط استراتژیک اقدام برای حل مساله مشخص گشته بود. نوربرت وینر ریاضیدان آمریکایی توانست این اثبات را اصلاح کند تا از به کار بردن عددهای مختلط در مرحله مهمی از استدلال اجتناب شود. با این حال، اثبات قضیه اعداد اول هنوز هم، حتی برای دانشجوی پیشرفته، آسان نیست. در سال 1949 پل اردوش ، استاد مسلم اپباع‌های ابتدایی ، و سلبرگ توانستند این قضیه را با تکنیک‌های ابتدایی نظریه اعداد و بدون استفاده از تکنیک‌های تحلیلی اثبات نمایند.

همچنین ببینید


پیوندهای خارجی

http://en.wikipedia.org/wiki/Prime_number_theorem




تعداد بازدید ها: 29739