حلقه










حلقه

هرگاه یک مجموعه ناتهی باشد ، گوییم مجموعه تحت دو عمل جمع و ضرب یک حلقه است ، هر گاه:
  1. یک گروه جابجایی باشد
  2. یک نیمگروه باشد.
  3. خاصیت توزیع پذیری ضرب نسبت به جمع از چپ و راست در برقرار باشد.

حلقه جابجایی

هرگاه حلقه تحت عمل ضرب دارای خاصیت جابجایی باشد ، گوییم یک حلقه جابجایی(آبلی ) است.

مقسوم علیه صفر

هرگاه یک حلقه باشد ، عنصر را یک مقسوم علیه صفر نامند ، هرگاه عضوی مانند در حلقه وجود داشته باشد ، بطوریکه.
در این تعریف اگر ، آنگاه را مقسوم علیه چپ صفر می‌نامد و اگر ،آنگاه را مقسوم علیه راست صفر می‌نامند.

واحد حلقه

اگر یک حلقه باشد،گوییم عنصری چون ،یک حلقه(واحد حلقه) است،هرگاه تحت عمل ضرب، عضو همانی باشد. یعنی:

اگر حلقه ای دارای عنصر واحد باشد، گوییم حلقه یکدار است و این یک را با نماد نشان می‌دهیم.

حلقه بدیهی

حلقه ای که فقط شامل عنصر صفر باشد، حلقه بدیهی نامیده می‌شود.

نکته

اگر ، حلقه بدیهی باشد، یعنی ، آنگاه .

قضیه

اگر یک حلقه و باشند ،آنگاه گزاره های زیر برقرارند:
1

2

3

4

5


عنصر یکال

هر گاه یک حلقه یکدار باشد، عنصر را عنصر یکال می‌نامیم ، هرگاه دارای وارون ضربی باشد .یعنی:

نکته

  1. در حلقه ، عنصر یکال است، هرگاه .
  2. عنصر یک هر حلقه منحصر بفرد است، اما یکال حلقه ، یکتا نیست.
  3. اگر یک حلقه مخالف صفرو یکدار نیز باشد، آنگاه .
  4. هر گاه حلقه یکدار و عنصر یکال باشد، آنگاه مقسوم علیه صفر نیست.

همچنین ببینید

گروه دوری
میدان




تعداد بازدید ها: 45502