توزیع دوجمله‌ای





توزیع دو جمله ای

امتحان های تکراری نقش بسیار مهمی در آمار و احتمال بازی می کنند خصوصا" وقتی تعداد امتحان ها ثابت و پارامتر (احتمال پیروزی) برای تمام امتحان ها برابر و امتحان ها همگی مستقل باشند.
به منظور تهیه فرمولی برای احتمال به دست آوردن " پیروزی در امتحان " تحت شرایطی که بیان شد ملاحضه کنید که احتمال به دست آوردن پیروزی و شکست در یک ترتیب مشخص برابر است. برای هر پیروزی یک عامل و برای هر شکست یک عامل وجود دارد و بنا بر فرض استقلال عامل و عامل در یکدیگر ضرب می شوند. چون این احتمال با هر دنباله ای از امتحان که در آن پیروزی و شکست وجود دارد همراه است تنها باید تعداد دنباله هایی از این نوع را بشماریم و سپس را در این تعداد ضرب کنیم.روشن است تعداد راه هایی که می توانیم امتحان را که برآمد همه آنها پیروزی است انتخاب کنیم برابر است با و نتیجه می شود که احتمال مطلوب برای " پیروزی در امتحان " برابر است.

تعریف

متغیر تصادفی توزیع دوجمله ای دارد و به آن عنوان متغیر تصادفی دو جمله ای داده می شود اگر و تنها اگر توزیع احتمال آن به صورت زیر باشد:


قضیه‌ها

قضیه(1)


قضیه(2)

میانگین و واریانس توزیع دو جمله ای برابرند با :

قضیه(3)

اکر توزیع دو جمله ای با پارامترهای باشد و آنکاه:

قضیه(4)

تابع مولد گشتاور توزیع دوجمله ای به صورت است.

نکته

اگر امین پیروزی در امین امتحان رخ دهد باید پیروزی در اولین امتحان وجود داشته باشد و احتمال این پیشامد عبارت است از :

احتمال یک پیروزی در امین امتحان برابر است با و بنا براین احتمال آن که امین پیروزی در امین احتمال رخ دهد برابر است با:


توزیع دوجمله ای منفی

متغیرتصادفی توزیع دوجمله ای منفی دارد و به آن عنوان متغیر تصادفی دوجمله ای منفی داده می شود اکر و تنها اگر توزیع احتمالش به ازای به صورت زیر باشد:


قضیه(5)


قضیه(6)

میانگین و واریانس توزیع دوجمله ای منفی عبارتند از :


همچنین ببینید




تعداد بازدید ها: 63271