تئوری اعداد




Untitled Document










تئوری اعداد number theory شاخه ای از ریاضیات محض pure mathematics است که در مورد خواص اعداد صحیح integers بحث می کند و حاوی بسیاری مسائل است که حتی غیر ریاضیدانان به راحتی آنها را متوجه می شوند .به طور کلی ایـن شاخه ، مسائل مربوط به مطالعه اعداد صحیح را مطرح می کند. تئوری اعداد را می توان بنا به روشهای بررسی سؤالات به چندین بخش تقسیم کرد.

تئوری مقدماتی اعداد

اعداد صحیح را بدون توجه به تکنیک های ریاضی به کار رفته در سایر شاخه ها بررسی می کند . مسائل بخش‌پذیری divisibility ، الگوریتم اقلیدسی Euclidean algorithm ، محاسبه ی بزرگترین مقسوم الیه مشترک greatest common divisors ، تجزیه ی اعداد به اعداد اول prime numbers ، جستجوی عدد تام perfect number و همنهشتی ها congruences در این رده هستند . نمونه ها قضیه ی کوچک فرما Fermat’s little theorem ، و قضیه ی اولر Euler’s theoremهستند و به طور عام قضیه ی باقیمانده ی چینی Chinese remainder theorem و قانون تقابل درجه ی دوم quadratic reciprocity هستند . خواص توابع ضربی multiplicative functions مانند تابع موبیوس Mobius function و تابع اولر Euler's φ function و همینطور دنباله ی اعداد صحیح integer sequences مانند فاکتوریل هاfactorials و اعداد فیبوناچی Fibonacci numbers در همین حوزه بررسی میشوند . بسیاری از سؤالات در تئوری مقدماتی اعداد شدیداً عمیق هستند و نیاز به بازنگری هایی دارند . به عنوان نمونه :

تئوری تحلیلی اعداد Analytic number theory

از حسابان calculus و آنالیز مختلط complex analysis برای مطالعه‌ی اعداد صحیح استفاه می کند و با سؤالاتی در مورد اعداد صحیح دست و پنجه نرم می کند که در تئوری مقدماتی اعداد بررسی و بحث در مورد آن بسیار دشوار به نظر می‌رسد . قضیه‌ی اعداد اول prime number theorem و فرضیه ریمان Riemann hypothesis مثال هایی از آن هستند . مساله ی وارینگ Waring’s problem ( که عدد صحیحی را به صورت جمع چند مربع یا مکعب چند عدد نشان می دهد ) ،انگاره‌ی اعداد اول دوقلو Twin prime conjecture(که تعداد بینهایت عدد اول با اختلاف 2 را پیدا می کند ) ، و فرضیه ی گلدباخ Goldbach’s conjecture ( که عددهای زوج داده شده را به صورت مجموع دو عدد اول پیدا می کند ) با روشهای تحلیلی مورد حمله قرار گرفته شده اند . اثبات متعالی بودن transcendence ثابت های ریاضی ، مانند e و پی در بخش تئوری اعداد تحلیلی قرار دارند . بعضی ها حکم هایی در مورد اعداد متعالی را از محدوده ی مطالعات اعداد صحیح خارج می کنند ، در واقع مقادیر ممکن برای چند جمله ایها با ضریب های صحیح مانند e و پی به مبحث تقریب دیوفانتین Diophantine aproximation ارتباط نزدیک دارند ؛ و سؤال آنها این است که چگونه می توان یک عدد حقیقی داده شده را با یک عدد گویا rational تقریب زد ؟

تئوری جبری اعداد

مفهوم عدد را به اعداد جبری algebraic numbers که همان ریشه های چند جمله ایها با ضرایب گویا rational coefficient هستند گسترش می‌دهد.در این حوزه مباحثی همانند اعداد صحیح به نام اعداد صحیح جبری algebraic integers وجود دارد . در اینجا لازم نیست به صورت های آشنای اعداد صحیح ، ( مانند تجزیه یکتا the unique factorization) پایبند باشیم .مزیت روش استفاده شده --تئوری گالوا Galois theory ، میدان همانستگی field cohomology ، تئوری رده ی میدان class field theory ، نمایش گروه ها group representations و L-تابع‌ها L-functions این است که به ما اجازه می دهدبرای این رده از اعداد ، این ترتیب را تا حدودی بپوشانیم .تعدادی از سؤالات قضیه ی اعداد با مطالعه پیمانه p برای کلیه اعداد اول p مورد حمله قرار گرفته شده اند . (به میدانهای متناهی finite fields مراحعه کنید ) .به چنین چیزی localization می گویند که به ساختمان اعداد p ادیک p-adic numbers می انجامد . به این محدوده تحلیل موضعی local analysis می گویند که از تئوری اعداد جبری ناشی می شود .

تئوری ترکیبیاتی اعداد

به بررسی ، مطالعه و حل مساله‌های تئوری اعداد با استفاده از تکنیک‌های ترکیبیاتی می‌پردازد. پل اردوش کارهای بزرگی در این زمینه انجام داد. روش‌های جبری و تحلیلی در این شاخه از تئوری اعداد کاربرد فراوان دارند.

تئوری هندسی اعداد

همه ی فرم های هندسی را در بر می گیرد ؛و از قضیه ی مینکوسکی Minkowski’s theorem در ارتباط با نقاط مشبکه lattice points در مجموعه های محدب convex sets و جستجو در بسته بندی کره ها sphere packings شروع می شود .هندسه جبری بخصوص خم‌های بیضوی elliptic curves نیز به کار می آیند .این تکنیک‌ها در اثبات آخرین قضیه معروف فرما Fermat’s last theorem تاثیر فراوان داشته اند .

تئوری محاسباتی اعداد computational number theory

به الگوریتم های تئوری اعداد می پردازد والگوریتم های سریع برای امتحان اعداد اول prime testing و تجزیه اعداد صحیح integer factorization در مبحث کریپتوگرافی cryptography کاربرد های مهمی دارند .

.






تاریخچه تئوری اعداد

بعد از دوران یونان باستان ، تئوری اعداد در قرن شانزدهم و هفدهم با زحمات ویتViete ، باشه دو مزیریاک Bachet de Meziriac ، و بخصوص فرما Fermat دوباره مورد توجه قرار گرفت . در قرن هجدهم اولر Euler و لاگرانژ Lagrange به قضیه پرداختند و در همین مواقع لژاندر Legendre و گاوس Gauss به آن تعبیر علمی بخشیدند . در 1801 گاوس در مقاله ی Disquisitiones Arithmeticæ حساب تئوری اعداد مدرن را پایه گذاری کرد .

چبیشفChebyshev کران هایی برای تعداد اعداد اول بین یک بازه ارائه داد . ریمان Riemann اظهار کرد که حد تعداد اعداد اول از یک عدد داده شده تجاوز نمی کند . (قضیه ی عدد اول prime number theory. ) و آنالیز مختلط complex analysis را در تئوری تابع زتای ریمان Riemann zeta function گنجاند و فرمول صریح تئوری اعداد اول explicit formulae of prime number theory را از صفر های آن نتیجه گرفت .
تئوری همنهشتی congruences از Disquisitiones گاوس شروع شد . او علامت گذاری زیر را پیشنهاد کرد :
(mod(c

چبیشف در سال 1847 به زبان روسی کاری را در این زمینه منتشر کرد و سره Serret آن را در فرانسه عمومی کرد . بجای خلاصه کردن کارهای قبلی ، لوژاندر قانون تقابل درجه ی دوم law of quadratic reciprocity را گذاشت . این قانون از استقراء induction کشف شد و قبلاً اولر آن را مطرح کرده بود. لوژاندر در تئوری اعداد Théorie des Nombres برای حالت های خاص آن را ثابت کرد . جدا از کارهای اولر و لوژاندر ، گاوس این قانون را در سال 1795 کشف کرد و اولین کسی بود که یک اثبات کلی ارائه داد . کوشی Cauchy ؛ دیریکله Dirichlet ( که مقاله ی Vorlesungen über Zahlentheorie او یک مقاله ی کلاسیک است) ؛ ژاکوبی Jacobi که علامت ژاکوبی Jacobi symbol را معرفی کرد ؛ لیوویلLiouville ؛ زلرZeller ؛ آیزنشتین Eisenstein؛ کومرKummer و کرونکر Kronecker نیز در این زمینه کارهایی کرده اند . این تئوری تقابل درجه دوم و سوم cubic and biquadratic reciprocity را شامل می شود. نمایش اعداد با صورت درجه ی دوم دوتایی binary quadratic forms مدیون گاوس است . کوشی ، پوانسو Poinsot ، لبگ Lebesgue و بخصوص هرمیت Hermite به موضوع چیزهایی افزوده اند . آیزنشتاین Eisenstein در تئوری صورت های سه گانه پیشتاز است ، و تئوری فرمها theory of forms به طور کلی مدیون او و اچ. اسمیتH. J. S. Smith است. اسمیت دسته بندی کاملی از صورتهای سه گانه انجام داد و تحقیقات گاوس در مورد صورت های درجه ی دوم حقیقی به فرمهای مختلط افزود . جستجوهایی در مورد نمایش اعداد به صورت جمع 4، 5 ،6 ، 7 ، 8 ، مربع توسط آیزنشتاین ادامه یافت و اسمیت آن را کامل کرد .






همچنین ببینید


پیوندهای خارجی

www.numbertheory.org
http://en.wikipedia.org/wiki/Number_theory


تعداد بازدید ها: 93174