منو
 کاربر Online
657 کاربر online
تاریخچه ی: مثلث

تفاوت با نگارش: 6

Lines: 1-23Lines: 1-150
 +{DYNAMICMENU()}
 +__واژه‌نامه__
 +*((واژگان هندسه))
 +__مقالات مرتبط__
 +*((هندسه مسطحه))
 +*((هندسه اقلیدسی))
 +*((هندسه نااقلیدسی))
 +*((هندسه تصویری))
 +__کتابهای مرتبط__
 +*((کتابهای هندسه))
 +__[ http://217.218.177.31/mavara/mavara-view_forum.php?forumId=29 |انجمن ریاضی]__
 +__سایتهای مرتبط__
 +*سایتهای خارجی
 +**[http://www.mathleague.com/help/geometry/geometry.htm|سایت مفاهیم هندسی]
 +**[http://mathforum.org/geopow|مسائل هندسی]
 +**[http://math.rice.edu/~lanius/Geom/cyls.html|کلاس آنلاین هندسه]
 +**[http://www.coolmath4kids.com/geometrystuff.html|آموزش هندسه برای کودکان]
 +**[http://www.gamequarium.com/geometry.html|بازیهای هندسی]
 +__گالری تصویر__
 +*[http://217.218.177.31/mavara/mavara-browse_gallery.php?galleryId=12|گالری علوم]
 +body=
 +|~|
 +{DYNAMICMENU}
 +V{maketoc}
 
 
 
 
  
-{picture file=img/daneshnameh_up/mos2.jpg} +{picture=mos2.jpg}
  
-{picture file=img/daneshnameh_up/mos4.jpg} +{picture=mos4.jpg}
  
  
 
 
 مثلث ار اساسی ترین اشکال در ((هندسه)) میباشد.یک مثلث دارای سه راس است که سه ضلع این رئوس را به هم وصل میکند.در ((هندسه اقلیدسی)) این اضلاع خطوطی مستقیم هستند. ولی در ((هندسه کروی)) این اضلاع کمان هایی از ((دایره)) عظیمه میباشند.این دو نوع مثلث را میتوانید در شکلهای روبرو مشاهده نمایید. مثلث ار اساسی ترین اشکال در ((هندسه)) میباشد.یک مثلث دارای سه راس است که سه ضلع این رئوس را به هم وصل میکند.در ((هندسه اقلیدسی)) این اضلاع خطوطی مستقیم هستند. ولی در ((هندسه کروی)) این اضلاع کمان هایی از ((دایره)) عظیمه میباشند.این دو نوع مثلث را میتوانید در شکلهای روبرو مشاهده نمایید.
 !انواع مثلث !انواع مثلث
 *__مثلث متساوی الاضلاع__: مثلثی است که دارای سه ضلع با طولهای مساوی است و زوایای داخلی این مثلث نیز با هم برابرند. *__مثلث متساوی الاضلاع__: مثلثی است که دارای سه ضلع با طولهای مساوی است و زوایای داخلی این مثلث نیز با هم برابرند.
 *__مثلث متساوی الساقین__: مثلثی است که دارای دو ضلع با طولهای مساوی استو دو زاویه داخلی برابر دارد. *__مثلث متساوی الساقین__: مثلثی است که دارای دو ضلع با طولهای مساوی استو دو زاویه داخلی برابر دارد.
 البته مثلث میتواند دارای سه ضلع با طولهای مختلف و زوایای غیر مساوی باشد. البته مثلث میتواند دارای سه ضلع با طولهای مختلف و زوایای غیر مساوی باشد.
 +*__مثلث قائم الزاویه__: مثلثی را گویند که یکی از زوایای آن 90درجه باشد.((نسبت های مثلثاتی)) مانند sin و cos ،بر روی مثلث قائم الزاویه تعریف میشوند.
 *__مثلث منفرجه__: مثلثی را گویند که یکی از زوایای داخلی آن بیشتر از 90 درجه باشد. *__مثلث منفرجه__: مثلثی را گویند که یکی از زوایای داخلی آن بیشتر از 90 درجه باشد.
 *__مثلث حاده __: مثلثی را گویند که تمام زوایای داخلی آن کمتر از 90 درجه باشد. *__مثلث حاده __: مثلثی را گویند که تمام زوایای داخلی آن کمتر از 90 درجه باشد.
-300 سال قبل از میلاد، ((اقلیدس)) ،اصول اولیه درباره مثلث را ارائه داد.یکی از این اول در مورد مجموع زوایای اخلی یک مثلث ات که ب آن مموع زوایای دالی یک مثلث برابر 180 درجه ات. ااس این اصل میتان با ملوم بود د اویه از مل میتوان ادازه ایه سوم را بدست ورد.
((سبت ای مثلثاتی)) انند sin و cos ،بر روی مثلث ام الزاویه تری میوند.
+300 سال قبل از میلاد ((اقلیدس)) ،اصول اولیه درباره مثلث را ارائه داد.به عنوان مثال یکی از اصول مهم در مورد مثلث این ات که مجموع زوایای داخلی یک مثلث برابر 180 درجه است. بر اساس این اصل میتوان با معلوم بودن دو زاویه از مثلث اندازه زاویه سوم را بدست آورد.
یکی از
مهمترین قضایای موجود در مثلثات ((قضیه فیثاغورث)) میباشد.در این قضیه رابطه بین وتر و اضلاع قائم یک مثلث قائم الزاویه بیان میشود.

!محاسبه مساحت مثلث
بر
ای ماسبه مساحت یک مثلث روشهای مختلفی وجود داردو در ادامه به توضیح این روشها میپردازیم

!!روش هندسی
برای محاسبه مساحت
یک مثلث بای طول ارتفاع مثلث و نیز طول قاعده(ضلعی که رتفاع بر آ عمود است) آن را داشته باشیم.نگاه میتوانیم از فرمول زیر استفاده کنیم:





||{TEX()} {s=\frac{1}{2}bh} {TEX}||

در این فرمول b طول قا
عده و h طول ارتفاع مثلث میباشد. در شکل زیر نحوه بدست آمدن این فرمول بیان شده است:










{picture=tri1.jpg}



تبدیل مثلث به یک ((متوازی الاضلاع)) که دو برار
مث
لث مساحت دارد وسپس تبدیل متوازی الضلاع به یک ((مستطیل))


برای پیدا کردن مساحت
مثلث (قسمت سبز) ابتدا یک کپی از مثلث (قسمت آبی) را برداشته و آن را 180 درجه میچرخانیم و ه مثلث اولیه متل میکنیم ا یک متوای الاضلاع بدست آید. با بریدن قسمتی از متوازی الاضلاع و متصل کردن آن به ضلع دیگر آن(همانند شکل) یک مستطی ایجاد یشود. ون مساحت مستطیل برابر bh است .پس ماحت مثلث اولیه، نصف این مساحت خواهد بود.



!!ر
ش برداری






{picture=PARAL1.jpg}




حاسبه ماحت متوازی الاضلاع با استفاده
/>از ضرب خارجی دو بردار

ماحت یک متوازی الضلاع را میتوان با استاده از ((بردار|بردارها)) ماسب کرد.اگر AB,AC را مطابق شکل فرض کنیم آنگاه مساحت ABCD برابر |''AB'' × ''AC''| خواهد بود.این مفدار ،اندازه ((ضرب خارجی )) دو بردار AB و AC میباشد.پس مساحت ملث ABC برابر با نصف اندازه ضرب خارجی دو بردار AB و AC خواهد شد.





!!ر
ش مثلثاتی








{picture=tri5.jpg}




استفاده از مثلثات
برای پیدا کردن ارتفاع ثلث



ارتفاع یک مثلث را میتوان با استفاده از روابط ((مثلثات|مثلثاتی)) بدست آرد.به عنوان مثال در شکل روبرو ارتفاع مثلث از فرمول{TEX()} {h=asiny } {TEX} محاسبه میشود.اگر این فرمول را درفرمول style="vertical-align:-150%;">{TEX()} {s=\frac{1}{2}bh} {TEX} جایگذاری کنیم فرمول al-align:-150%;">{TEX()} {s=\frac{1}{2}absiny} {TEX}ont> بدست می آید:



!!روش مختصاتی

فرض میکنیم نقطه A به مختصات __(0,&nb
sp;0)__یک اس از مثلث باشد و نقاط B به مختصات(''x''1, ''y''1) و C به مختصات(''x''2, ''y''2) دو راس دگر مثلث باشند.در این صورت مساحت مثلث نصف مقدار__|''x''1''y''2 − ''x''2''y''1| __خواهد شد.
!!فرمول heron

راه د
یگر محاسبه مساحت مثلث استاه از فرمول heron است. این فرمول به صورت زیر است:

||{TEX()} {S = \sqrt{s(s-a)(s-b)(s-c)}} {TEX}||

!همچنین ببینید:
*((قضیه فیثاغ
ورث))
*((قض
یه تلس))
*((ویژگیهای هندسی مثلث))
*((همنهشتی مثلثها))
*((نامساوی هندسی))
*((مثلث ک
روی))
*((چ
دضلعی|چندضلعی ها))
*((دایره های
محاطی اخلی و خارجی یک مثلث))
*((اعداد مثلثی))

!پی
وند های خارجی
[http://encarta
.msn.com/encyclopedia_761563143/Triangle_(geometry).html#s3|www.msn encarta.com]
[http://en.wikipedia.org/wiki/Triangle|www.wikipedia.com]

تاریخ شماره نسخه کاربر توضیح اقدام
 یکشنبه 25 تیر 1385 [11:44 ]   36   علی هادی      جاری 
 یکشنبه 25 تیر 1385 [09:57 ]   35   علی هادی      v  c  d  s 
 یکشنبه 25 تیر 1385 [08:51 ]   34   علی هادی      v  c  d  s 
 دوشنبه 19 تیر 1385 [11:11 ]   33   علی هادی      v  c  d  s 
 سه شنبه 20 اردیبهشت 1384 [08:38 ]   32   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [11:10 ]   31   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [10:43 ]   30   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [10:34 ]   29   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [10:31 ]   28   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [10:26 ]   27   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [08:00 ]   26   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [07:43 ]   25   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [07:36 ]   24   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [07:33 ]   23   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [07:12 ]   22   علی هادی      v  c  d  s 
 یکشنبه 23 اسفند 1383 [06:55 ]   21   علی هادی      v  c  d  s 
 شنبه 22 اسفند 1383 [11:46 ]   20   علی هادی      v  c  d  s 
 شنبه 22 اسفند 1383 [10:36 ]   19   علی هادی      v  c  d  s 
 شنبه 22 اسفند 1383 [10:13 ]   18   علی هادی      v  c  d  s 
 شنبه 22 اسفند 1383 [08:21 ]   17   علی هادی      v  c  d  s 
 شنبه 22 اسفند 1383 [08:12 ]   16   علی هادی      v  c  d  s 
 شنبه 22 اسفند 1383 [07:28 ]   15   علی هادی      v  c  d  s 
 شنبه 22 اسفند 1383 [07:09 ]   14   علی هادی      v  c  d  s 
 شنبه 22 اسفند 1383 [06:19 ]   13   علی هادی      v  c  d  s 
 شنبه 22 اسفند 1383 [05:32 ]   12   علی هادی      v  c  d  s 
 چهارشنبه 19 اسفند 1383 [11:26 ]   11   علی هادی      v  c  d  s 
 چهارشنبه 19 اسفند 1383 [11:05 ]   10   علی هادی      v  c  d  s 
 چهارشنبه 19 اسفند 1383 [10:06 ]   9   علی هادی      v  c  d  s 
 چهارشنبه 19 اسفند 1383 [06:52 ]   8   علی هادی      v  c  d  s 
 چهارشنبه 19 اسفند 1383 [06:38 ]   7   علی هادی      v  c  d  s 
 چهارشنبه 19 اسفند 1383 [06:18 ]   6   علی هادی      v  c  d  s 
 چهارشنبه 19 اسفند 1383 [06:11 ]   5   علی هادی      v  c  d  s 
 چهارشنبه 19 اسفند 1383 [05:46 ]   4   علی هادی      v  c  d  s 
 چهارشنبه 19 اسفند 1383 [04:38 ]   3   علی هادی      v  c  d  s 
 سه شنبه 18 اسفند 1383 [12:14 ]   2   علی هادی      v  c  d  s 
 سه شنبه 18 اسفند 1383 [11:52 ]   1   علی هادی      v  c  d  s 


ارسال توضیح جدید
الزامی
big grin confused جالب cry eek evil فریاد اخم خبر lol عصبانی mr green خنثی سوال razz redface rolleyes غمگین smile surprised twisted چشمک arrow



از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..