تاریخچه ی:
جدول انتگرال توابع نمایی
تفاوت با نگارش: 2
| ||V{maketoc}|| | | ||V{maketoc}|| |
| ^@#16: | | ^@#16: |
| ! جدول انتگرال توابع نمایی: | | ! جدول انتگرال توابع نمایی: |
| @@{TEX()} {\int e^x\,dx = e^x + C} {TEX}@@ | | @@{TEX()} {\int e^x\,dx = e^x + C} {TEX}@@ |
| @@{TEX()} {\int a^x\,dx = \frac{a^x}{\ln{a}} + C} {TEX}@@ | | @@{TEX()} {\int a^x\,dx = \frac{a^x}{\ln{a}} + C} {TEX}@@ |
| --- | | --- |
| @@{TEX()} {\int e^{cx}\;dx = \frac{1}{c} e^{cx}} {TEX}@@ | | @@{TEX()} {\int e^{cx}\;dx = \frac{1}{c} e^{cx}} {TEX}@@ |
| @@{TEX()} {\int a^{cx}\;dx = \frac{1}{c \ln a} a^{cx} \qquad\mbox{( } a > 0,\mbox{ }a \ne 1\mbox{)}} {TEX}@@ | | @@{TEX()} {\int a^{cx}\;dx = \frac{1}{c \ln a} a^{cx} \qquad\mbox{( } a > 0,\mbox{ }a \ne 1\mbox{)}} {TEX}@@ |
| @@{TEX()} {\int xe^{cx}\; dx = \frac{e^{cx}}{c^2}(cx-1)} {TEX}@@ | | @@{TEX()} {\int xe^{cx}\; dx = \frac{e^{cx}}{c^2}(cx-1)} {TEX}@@ |
| @@{TEX()} {\int x^2 e^{cx}\;dx = e^{cx}\left(\frac{x^2}{c}-\frac{2x}{c^2}+\frac{2}{c^3}\right)} {TEX}@@ | | @@{TEX()} {\int x^2 e^{cx}\;dx = e^{cx}\left(\frac{x^2}{c}-\frac{2x}{c^2}+\frac{2}{c^3}\right)} {TEX}@@ |
| @@{TEX()} {\int x^n e^{cx}\; dx = \frac{1}{c} x^n e^{cx} - \frac{n}{c}\int x^{n-1} e^{cx} dx} {TEX}@@ | | @@{TEX()} {\int x^n e^{cx}\; dx = \frac{1}{c} x^n e^{cx} - \frac{n}{c}\int x^{n-1} e^{cx} dx} {TEX}@@ |
| @@{TEX()} {\int\frac{e^{cx}\; dx}{x} = \ln|x| +\sum_{i=1}^\infty\frac{(cx)^i}{i\cdot i!}} {TEX}@@ | | @@{TEX()} {\int\frac{e^{cx}\; dx}{x} = \ln|x| +\sum_{i=1}^\infty\frac{(cx)^i}{i\cdot i!}} {TEX}@@ |
| @@{TEX()} {\int\frac{e^{cx}\; dx}{x^n} = \frac{1}{n-1}\left(-\frac{e^{cx}}{x^{n-1}}+c\int\frac{e^{cx} }{x^{n-1}}\,dx\right) \qquad\mbox{( }n\neq 1\mbox{)}} {TEX}@@ | | @@{TEX()} {\int\frac{e^{cx}\; dx}{x^n} = \frac{1}{n-1}\left(-\frac{e^{cx}}{x^{n-1}}+c\int\frac{e^{cx} }{x^{n-1}}\,dx\right) \qquad\mbox{( }n\neq 1\mbox{)}} {TEX}@@ |
| @@{TEX()} {\int e^{cx}\ln x\; dx = \frac{1}{c}e^{cx}\ln|x|-\operatorname{Ei}\,(cx)} {TEX}@@ | | @@{TEX()} {\int e^{cx}\ln x\; dx = \frac{1}{c}e^{cx}\ln|x|-\operatorname{Ei}\,(cx)} {TEX}@@ |
| @@{TEX()} {\int e^{cx}\sin bx\; dx = \frac{e^{cx}}{c^2+b^2}(c\sin bx - b\cos bx)} {TEX}@@ | | @@{TEX()} {\int e^{cx}\sin bx\; dx = \frac{e^{cx}}{c^2+b^2}(c\sin bx - b\cos bx)} {TEX}@@ |
| @@{TEX()} {\int e^{cx}\cos bx\; dx = \frac{e^{cx}}{c^2+b^2}(c\cos bx + b\sin bx)} {TEX}@@ | | @@{TEX()} {\int e^{cx}\cos bx\; dx = \frac{e^{cx}}{c^2+b^2}(c\cos bx + b\sin bx)} {TEX}@@ |
| @@{TEX()} {\int e^{cx}\sin^n x\; dx = \frac{e^{cx}\sin^{n-1} x}{c^2+n^2}(c\sin x-n\cos x)+\frac{n(n-1)}{c^2+n^2}\int e^{cx}\sin^{n-2} x\;dx} {TEX}@@ | | @@{TEX()} {\int e^{cx}\sin^n x\; dx = \frac{e^{cx}\sin^{n-1} x}{c^2+n^2}(c\sin x-n\cos x)+\frac{n(n-1)}{c^2+n^2}\int e^{cx}\sin^{n-2} x\;dx} {TEX}@@ |
| @@{TEX()} {\int e^{cx}\cos^n x\; dx = \frac{e^{cx}\cos^{n-1} x}{c^2+n^2}(c\cos x+n\sin x)+\frac{n(n-1)}{c^2+n^2}\int e^{cx}\cos^{n-2} x\;dx} {TEX}@@ | | @@{TEX()} {\int e^{cx}\cos^n x\; dx = \frac{e^{cx}\cos^{n-1} x}{c^2+n^2}(c\cos x+n\sin x)+\frac{n(n-1)}{c^2+n^2}\int e^{cx}\cos^{n-2} x\;dx} {TEX}@@ |
| @@{TEX()} {\int x e^{c x^2 }\; dx= \frac{1}{2c} \; e^{c x^2}} {TEX}@@ | | @@{TEX()} {\int x e^{c x^2 }\; dx= \frac{1}{2c} \; e^{c x^2}} {TEX}@@ |
| @@{TEX()} {\int {1 \over \sigma\sqrt{2\pi} }\,e^{-{(x-\mu )^2 / 2\sigma^2}}\; dx= \frac{1}{2 \sigma} (1 + \mbox{erf}\,\frac{x-\mu}{\sigma \sqrt{2}})} {TEX}@@ | | @@{TEX()} {\int {1 \over \sigma\sqrt{2\pi} }\,e^{-{(x-\mu )^2 / 2\sigma^2}}\; dx= \frac{1}{2 \sigma} (1 + \mbox{erf}\,\frac{x-\mu}{\sigma \sqrt{2}})} {TEX}@@ |
| @@{TEX()} {\int e^{x^2}\,dx = e^{x^2}\left( \sum_{j=0}^{n-1}c_{2j}\,\frac{1}{x^{2j+1}} \right )+(2n-1)c_{2n-2} \int \frac{e^{x^2}}{x^{2n}}\;dx \quad \mbox{ } n > 0, } {TEX}@@ | | @@{TEX()} {\int e^{x^2}\,dx = e^{x^2}\left( \sum_{j=0}^{n-1}c_{2j}\,\frac{1}{x^{2j+1}} \right )+(2n-1)c_{2n-2} \int \frac{e^{x^2}}{x^{2n}}\;dx \quad \mbox{ } n > 0, } {TEX}@@ |
| بطوریکه: | | بطوریکه: |
| @@{TEX()} { c_{2j}=\frac{ 1 \cdot 3 \cdot 5 \cdots (2j-1)}{2^{j+1}}=\frac{2j\,!}{j!\, 2^{2j+1}} \ . } {TEX}@@ | | @@{TEX()} { c_{2j}=\frac{ 1 \cdot 3 \cdot 5 \cdots (2j-1)}{2^{j+1}}=\frac{2j\,!}{j!\, 2^{2j+1}} \ . } {TEX}@@ |
| --- | | --- |
| !همچنین ببینید: | | !همچنین ببینید: |
| *((جدول انتگرال توابع گویا)) | | *((جدول انتگرال توابع گویا)) |
| *((جدول انتگرال توابع گنگ)) | | *((جدول انتگرال توابع گنگ)) |
| *((جدول انتگرال توابع لگاریتمی)) | | *((جدول انتگرال توابع لگاریتمی)) |
| *((جدول انتگرال توابع مثلثاتی)) | | *((جدول انتگرال توابع مثلثاتی)) |
| + | *((جدول انتگرال معکوس توابع مثلثاتی)) |
| *((جدول انتگرال توابع هیپربولیک)) | | *((جدول انتگرال توابع هیپربولیک)) |
| #@^ | | #@^ |