منو
 کاربر Online
501 کاربر online
تاریخچه ی: احتمال

!مقدمه
احتمال یکی از ابزارهای اساسی علم آمار است که آغاز رسمی آن به قرن هفدهم برمی‌گردد. در این قرن بازیهایی که در آن شانس ، دخالت بسزایی داشته رایج بوده است. این بازیها همان طور که از اسم آن پیداست کارهایی از قبیل چرخاندن چرخ ، ریختن یک تاس ، پرتاب یک سکه و غیره را دربرمی‌گیرد. که در آنها برآمد آزمایش ، قطعی نیست. به هر حال واضح است که حتی با وجود قطعی نبودن برآمد هر آزمایش ویژه به یک برآمد قابل پیش بینی در دراز مدت وجود دارد.
!انواع احتمال
!!احتمال کلاسیک
اگر آزمایشی تصادفی دارای n برآمد ممکن دو به دو ناساگار و هم‌شانس باشد و اگر nA برآمد از این برآمدها حاوی صفت A باشند، آنگاه احتمال A برابر کسر می‌باشد. احتمالهایی که با تعریف کلاسیک احتمال تعیین می‌شوند ((احتمالهای پیشین)) نامیده می‌شوند. وقتی بیان می‌کنیم که احتمال بدست آوردن شیر در پرتاب یک سکه 2/1 است، صرفا با ((استدلال قیاسی|استدلال مقیاسی)) به این نتیجه رسیده‌ایم. برای رسیدن به این نتیجه لازم نیست که هر سکه‌ای پرتاب شود یا حتی موجود باشد.
!!احتمال پسین یا فراوانی
مثلا در پرتاب یک سکه فراوانی نسبی تعداد شیرها به 2/1 نزدیک است. این مساله دور از انتظار نیست چون سکه متقارن بوده و پیش بینی می‌شد که در تکرار زیاد ، رویه شیر در حدود نیمی از دفعات ظاهر شود. توجه کنید گر چه فراوانیهای نسبی برآمدهای گوناگون قابل پیش بینی هستند ولی برآمد واقعی یک بار پرتاب غیر قابل پیش بینی است. این احتمالهای تجدید نظر شده را ((احتمالهای پسین)) یا پس از آزمایش گویند که هر گونه استنباطی در مورد وضعیتهای طبیعی نامعلوم ، باید مبتنی بر آنها باشد.
!قواعد کلی احتمال
خواص احتمال مربوط به فضاهای گسسته که در آنها برآمدهای مقدماتی یا متناهی‌اند یا آنها را می‌توان به صورت یک دنباله مرتب نمود. در بسیاری از آزمایشها ، با کمیت پیوسته از قبیل قد ، وزن و درجه حرارت سروکار داریم. در این گونه آزمایشها ، فضای نمونه بدست آمده مرکب از تمام اعداد حقیقی موجود در یک فاصله است و ((فضای نمونه پیوسته)) نامیده می‌شود.

بیشتر مطالب مربوط به تعبیر احتمال یک پیشامد به عنوان فراوانی نسبی در تکرار زیاد آزمایشها و بیشتر خواص احتمال ، برای این فضاها نیز معتبرند. مع‌هذا ، در فضای نمونه پیوسته این استثنای قابل ملاحظه وجود دارد که
رابطه (P(A)=∑ P(e (به ازای تمام eهای متعلق به A)
فاقد معنی است زیرا برآمدهای مقدماتی e در A نه تنها نامتناهی‌اند بلکه به صورت یک دنباله نیز نمی‌توان آنها را مرتب کرد. در ((ریاضی)) ، اگر جمله‌هایی را که باید جمع شوند نتوان به صورت یک دنباله نوشت، عمل جمع تفریق نمی‌شود.
!شرایط احتمال
برای تعریف کلی احتمال ، شرایطی را بیان می‌کنیم که هر عددی که به عنوان احتمال به یک پیشامد منسوب می‌شود باید آن شرایط را داشته باشد. این شرایط با توجه به رفتار فراوانیهای نسبی تعیین شده است و منطبق بر خواص احتمال در فضاهای گسسته است.
*احتمال P ، تابعی است با مقادیر عددی که روی پیشامدهای موجود در یک فضای نمونه S تعریف می‌شود و در شرایط زیر صدق می‌کند.
الف) برای تمام پیشامدهای 0≤P(A)≤1,A
ب) P(S)=1 (احتمال پیشامد فضای نمونه برابر 1 است)
ج) برای پیشامدهای جدا از هم A1 ، A2 و ...
::... + (P(A1 U A2 U …) = P(A1) + P(A2::
برای یافتن قاعده متمم گیری ، توجه کنید که A و Á دو پیشامد جدا از هم هستند و A U Á = S
!سه قانون مهم احتمال برای یک فضای نمونه در حالت کلی
@@(P(A) = 1 - P(Á @@
@@(P(AUB) = P(A) + P(B) - P(A∩B) = P(A) + P(B) - P(AB@@
@@(P(A∩B) = P(AB) = P(B) P(A|B@@
@@P(A U Á)= P(A) + P(Á) = P(S) = 1@@
@@(P(AUBUC) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC@@
!احتمالهای اصل موضوعی
دو نوع کلی احتمال (پیشین و پسین) دارای نکته مشترکی هستند: هر دوی آنها به آزمایشی خیالی نیاز دارند که برآمدهای گوناگون در این آزمایشها بتوانند تحت شرایط نسبتا یکنواخت رخ دهند. برای مثال پرتابهای مکرر یک سکه برای حالت پیشین و زاد و ولدهای مکرر برای حالت پسین را می‌توان نام برد. اما ممکن است بخواهیم مواردی را به دنیای نظریه احتمال وارد کنیم که قرار دادن آنها در چارچوب برآمدهای مکرری که تا اندازه‌ای دارای شرایط یکسانند قابل درک نمی‌باشد.

مثلا ممکن است علاقمند باشیم به پرسشهایی از قبیل ، احتمال این که جنگ جهانی سوم قبل از تاریخ معینی شروع شود، پاسخ دهیم. این نوع مسایل تنها پرسشهای به جا در نظریه احتمال عمومی هستند که در آنچه به آن احتمال ذهنی اطلاق می‌شود گنجانده شده‌اند. هر برآمد ممکن یک آزمایش طرح ریزی شده تحت بررسی را نقطه نمونه و مجموعه کلیه برآمدهای ممکن (یا نقاط نمونه) را ((فضای نمونه)) می‌نامیم.
!مباحث مرتبط با عنوان
*((اجتماع مجموعه‌ها))
*((اصل موضوعی احتمال))
*((احتمال پسین))
*((احتمال پیشین))
*((احتمال شرطی))
*((اشتراک مجموعه‌ها))
*((پیشامد))
*((متمم))
*((فضای پیوسته))
*((فضای گسسته))
*((نظریه احتمال))

تاریخ شماره نسخه کاربر توضیح اقدام
 دوشنبه 27 شهریور 1385 [20:33 ]   3   علی هادی      جاری 
 پنج شنبه 25 اسفند 1384 [06:56 ]   2   حسین خادم      v  c  d  s 
 پنج شنبه 25 اسفند 1384 [06:54 ]   1   حسین خادم      v  c  d  s 


ارسال توضیح جدید
الزامی
big grin confused جالب cry eek evil فریاد اخم خبر lol عصبانی mr green خنثی سوال razz redface rolleyes غمگین smile surprised twisted چشمک arrow



از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..