منو
 کاربر Online
648 کاربر online

واژگان آنالیز

تازه کردن چاپ
علوم ریاضی > ریاضی > شاخه های ریاضی
(cached)

معادل فارسی
تعریف
واژه لاتین
ترتیب اگر S یک مجموعه باشد، یک ترتیب بر S رابطه ای است که با > نموده می شود و از دو خاصییت زیر برخوردار است: الف) هرگاه x و y متعلق به S باشند، آنگاه یک و فقط یکی از گزاره های y<x یا y=x یا y>x راست است. ب) هرگاه x و y و z اعضایی از S باشند به طوری که x<y و y<z، آنگاه x<z. order
کوچکترین کران بالا اگر S یک مجموعه ی مرتب و E زیر مجموعه ای از S باشد که از بالا کراندار است و همچنین عنصری مانند a از S با خواص زیر وجود داشته باشد:الف) a یک کران بالایی E باشد.ب) هرگاه b<a، آنگاه b یک کران بالایی E نباشد. دراینصورت aکوچکترین کران بالایی یا سوپریمم E نامیده می شود و می توان نوشت: a=sup E supremem
بزرگترین کران پایین اگر S یک مجموعه ی مرتب و E زیر مجموعه ای از S باشد که از پایین کراندار است و همچنین عنصری مانند a از S با خواص زیر وجود داشته باشد: الف) a یک کران پایینی E باشد. ب) هرگاه b>a، آنگاه b یک کران پایینی E نباشد. دراینصورت aبزرگترین کران پایینی یا اینفیمم E نامیده می شود و می توان نوشت: a=inf E infimum
میدان یک میدان مجموعه ای است مانندF با دو عمل، به نام های جمع و ضرب، که در اصول موضوع میدان صدق می کند. field
میدان مرتب یک میدان مرتب میدانی است مانند F که یک مجموعه ی مرتب نیز هست و برای هر x و y و z متعلق به F: الف) از y<z می توان نتیجه گرفت x+y<x+z، ب) اگر x>0 و y>0 آنگاه xy>0 ordered field
تابع اگر دو مجموعه ی A و B که عناصرشان اشیاء دلخواهی هستند، به طوری مفروض باشند که به هرعنصر x از A، عنصری از B که آن را با (f(x نشان می دهند، مربوط شده باشد، آنگاه f را یک تابع از A به B گویند. function
دامنه در تعریف تابع، مجموعه ی A را دامنه تابع f می نامند. domain
برد در تعریف تابع، (f(x ها را مقادیر f و مجموعه ی تمام مقادیر f را برد f می خوانند. range
یک به یک در تعریف تابع، هرگاه به ازای هر عنصر دلخواه y در B، تابع معکوس f حداکثر شامل یک عنصر از A باشد، آنگاه f یک نگاشت 1-1 از A به توی B نام دارد. one-to-one (injective)
پوشا در تعریف تابع، اگر f(A)=B آنگاه f را یک تابع پوشا گویند. surjective
تابع معکوس در تعریف تابع، هرگاه مجموعه E زیر مجموعه ای از B باشد، تابع معکوس E، مجموعه ی تمام xهایی در A است که مقادیرشان در E باشد. inverse function
هم ارز A و B را هم ارز گویند، هرگاه یک نگاشت 1-1 و پوشا از A به B موجود باشد. equivalent
متناهی به ازای هر عدد صحیح و مثبت n، اگر Jn مجموعه ی شامل اعداد صحیح n,…,2,1 باشد (J مجموعه ی تمام اعداد صحیح مثبت)، آنگاه مجموعه ی دلخواه A متناهی است هرگاه به ازای n ای، A~Jn. (مجموعه ی تهی را نیز متناهی در نظر می گیرند) finite
نا متناهی A نا متناهی است هرگاه متناهی نباشد. infinite
شمارا Aشمارا است هرگاه J~A. (تعریف Jدر بند متناهی آورده شده) countable
ناشمارا A ناشماراست هرگاه نه متناهی باشد و نه شمارا. uncountable
دنباله منظور از یک دنباله، تابعی چون f می باشد که بر مجموعه تمام اعداد طبیعی تعریف شده است. sequence
اجتماع اجتماع مجموعه های Ea، که در آن a به مجموعه ی اندیس گذاری چون A تعلق دارد، مجموعه ای چون S است به طوری که: x متعلق به S است اگر و فقط اگر به ازای لااقل یک a متعلق به A، عنصر x متعلق به Ea باشد. union
اشتراک اشتراک مجموعه های Ea، که در آن a به مجموعه ی اندیس گذاری چون A تعلق دارد، مجموعه ای چون S است به طوری که: x متعلق به S است اگر و فقط اگر به ازای هر a متعلق به A، عنصر x متعلق به Ea باشد. intersection
فضای متریک مجموعه X درصورتی یک فضای متریک است که به هر دو نقطه ی q و p از X، عدد حقیقی (d(p,q، به نام فاصله از p تا q، طوری مربوط شده باشد که : الف) d(p,q)>0 هرگاه p مخالف q باشد و همچنین d(p,p)=0. ب) (d(p,q)=d(q,p. ج) ازای هر عنصر دلخواه r>0 از مجموعه ی X داشته باشیم: (d(p,q) < d(p,r)+d(r,q. لازم به ذکر است که هر تابع برخوردار از سه خاصیت فوق را یک متر می نامند. metric space
قطعه منظور از قطعه ی (a,b) یعنی مجموعه ی تمام x های حقیقی که a<x<b. segment
همسایگی با فرض فضای متریک X، یک همسایگی نقطه ی p در X مجموعه ای است مانند (B(p,r مرکب از تمامی نقاطی چون q که d(p,q)<r. neighborhood
شعاع در تعریف همسایگی عدد r شعاع (B(p,r نامیده می شود . radius
نقطه حدی اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه نقطه ی p در X یک نقطه ی حدی مجموعه ی E است هرگاه هر همسایگی p شامل نقطه ای چون q در E غیر از p باشد. limit point
نقطه تنها اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه نقطه ی p در X یک نقطه ی تنهای مجموعه ی E است هرگاه p عنصری از E باشد اما نقطه ی حدی E نباشد. isolated point
نقطه درونی اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه نقطه ی p در X یک نقطه ی درونی مجموعه ی E است، هرگاه یک همسایگی از p مانند B باشد به طوری که B زیر مجموعه ی E است. interior point
باز اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه E باز است هرگاه هر نقطه ی آن درونی باشد. open
بسته اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه E بسته است هرگاه هر نقطه ی حدی اش به خود مجموعه ی E تعلق داشته باشد. close
متمم اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه متمم E عبارت است از مجموعه ی تمام نقاطی چون p از X که متعلق به E نباشند. complement
کامل اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه E کامل است هرگاه E بسته و هر نقطه ی E یک نقطه ی حدی اش باشد. prefect
کراندار اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه E کراندار است هرگاه عددی حقیقی چون M و نقطه ای از X مانند q یافت شوند به طوری که برای هر p متعلق به E رابطه ی d(p,q)<M برقرار باشد. bounded
چگال اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه E در X چگال است هرگاه هر نقطه ی X یک نقطه ی حدی E یا یک نقطه ی E (و یا هر دو) باشد. dense
بست اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه بست E عبارت است از اجتماع مجموعه ی E با مجموعه ی تمام نقاط حدی اش. closure
پوشش باز منظور از یک پوشش باز مجموعه ی E در فضای متریک X، گردایه ای از زیر مجموعه های باز X مانند {Ga}، که در آن a به مجموعه ی اندیس گذاری چون A تعلق دارد، است که E زیر مجموعه ی اجتماع تمام Ga ها می باشد. open cover
فشرده زیر مجموعه ی K از فضای متریک X را فشرده نامند هرگاه هر پوشش باز K دارای زیر پوششی متناهی باشد. compact
از هم جدا شده دو زیر مجموعه ی A و B از فضای متریک X را از هم جدا شده نامند هرگاه هیچ نقطه ی A در بست B و هیچ نقطه ی B در بست A قرار نگیرد. separated
همبند اگر X یک فضای متریک و E زیر مجموعه ای از آن باشد، آنگاه E همبند است هرگاه اجتماع دو مجموعه ی از هم جدا شده ی ناتهی نباشد. connected
قطر اگر X یک فضای متریک و E زیر مجموعه ای از آن و S مجموعه ی تمام اعداد حقیقی (d(p,q باشد که در آن p و q اعضایی از E هستند، آنگاه سوپریمم S قطر E نامیده می شود. diameter



تعداد بازدید ها: 57805


ارسال توضیح جدید
الزامی
big grin confused جالب cry eek evil فریاد اخم خبر lol عصبانی mr green خنثی سوال razz redface rolleyes غمگین smile surprised twisted چشمک arrow



از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..