منو
 صفحه های تصادفی
جامعه
امام علی علیه السلام و رفع ابهام در وصیت نامه
خونریزی خارجی
انعقاد داخل عروق منتشر
وجه لقب قسیم النار و الجنه
واکسن آنفولانزا و سرماخوردگی
بسته‌ شدن‌ مجرای‌ گوش‌ توسط‌ موم‌ گوش‌
عقاید مخالفین منطق و پاسخ های داده شده به آن
تکثیر ویروسها
تثبیت نیتروژن
 کاربر Online
351 کاربر online

قضیه دوم یک‌ریختی گروه‌ها

تازه کردن چاپ
علوم ریاضی > ریاضی > شاخه های ریاضی > ریاضی محض
(cached)





قضیه دوم یک‌ریختی گروهها

اگر دو زیر گروه باشند ، به‌طوری‌که نرمال در باشد ، آنگاه زیرگروه نرمال در است و:


اثبات:
چون ، بنابراین که معادل است با .
بدیهی است . زیرا .بنابراین گروه خارج‌قسمتی تعریف شده می‌باشد.
حال نشان می‌دهیم با ضابطۀ زیر یک اپی‌مورفیسم است:

اما خوش‌تعریف است .زیرا:

هم‌ریختی نیز می‌باشد. چرا که:

اکنون به بررسی پوشا بودن می‌پردازیم :

در نتیجه یک اپی‌مورفیسم است. بنابراین طبق قضیه اول یک‌ریختی گروه‌ها داریم :

حال کافیست نشان دهیم . اما :

اما می دانیم است . بنابراین و .

نتیجه:

اگر یک گروه متناهی و باشند و ، آنگاه :


اثبات:
طبق قضیه دوم یک‌ریختی گروه‌ها:


همچنین ببینید


پیوندهای خارجی

http://mathworld.wolfram.com/SecondGroupIsomorphismTheorem.html


تعداد بازدید ها: 10730


ارسال توضیح جدید
الزامی
big grin confused جالب cry eek evil فریاد اخم خبر lol عصبانی mr green خنثی سوال razz redface rolleyes غمگین smile surprised twisted چشمک arrow



از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..