در ریاضیات اتحادها تساوی هایی هستند که به ازای هر مقدار عددی از دامنه خود که بجای متغییرهایشان قرار دهیم همواره برقرار باشند. به عنوان مثال تساوی برای هر x عضو دامنه برقرار است. لذا این عبارت جبری یک اتحاد است، اما تساوی فقط برای x=1 برقرار است. پس این عبارت یک اتحاد نمی باشد. در واقع در مورد یک اتحاد در اصل به یک تساوی بدیهی چون 0=0 می رسیم.
به عنوان مثال در اتحاد مثال زده شده دو طرف ساده شده و تساوی 0=0 حاصل می شود.
به این ترتیب تفاوت میان یک اتحاد جبری و یک معادله جبری در این است که اتحاد جبری به ازای همه مقادیر دامنه برقرار است در صورتی که یک معادله جبری به ازای تعداد محدودی از اعضای دامنه(مجموعه جواب معادله) برقرار است.
عبارات زیر نمونه ای از اتحاد است:
در میان اتحادهای جبری، برخی از اتحادها بسیار مهم و کاربردی می باشند و در حل معادلات، محاسبات جبری، تجزیه عبارت جبری و... بسیار کاربرد دارند. از این رو دانستن و به کاربردن آنها از اهمیت خاصی برخوردار است. در این قسمت به بررسی این اتحادهای مهم می پردازیم.
در دو اتحاد قبل مشاهدی کردید که عبارت مجموع با تفاضل دو جمله چون (a+b)،(a-b) به توان های دو و سه رسیدند. حال این اتحاد برای توانهای طبیعی n هم قابل تعمیم است و به آن اتحاد بسط دو جمله ای نیوتن می گویند.
علاوه بر اتحاد های جبری ذکر شده هر عبارت دیگر که برای هر مقدار از دامنه برقرار باشد را نیز می توان به عنوان اتحاد دانست. به عنوان مثال از مهمترین این اتحاد ها، اتحاد های مثلثاتی می باشند.
از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..
وزارت آموزش و پرورش > سازمان پژوهش و برنامهريزی آموزشی
شبکه ملی مدارس ایران رشد