دید کلی
آشکار ساز گایگر مولر (G-M) که آشکار ساز گایگر نیز نامیده میشود، یکی از کنتورهای گازی است که به مقدار زیاد مورد استفاده قرار میگیرد. این آشکار ساز دارای امتیازات زیادی ، نظیر کار آیی زیاد برای ذرات آنها و پالس با ارتفاع بیشتر میباشد. به علاوه سیستم تقویت کننده نیاز ندارند. یک عیب که برای این آشکار ساز وجود دارد این است که تمام پالسهای حاصل از ذرات مختلف دارای یک ارتفاع هستند، بنابراین نمیتوان با استفاده از این آشکار سازها درباره انرژی اشعه اطلاعات بدست آورد.
تاریخچه
در سال 1908 آشکار سازهای گازی برای آشکار سازی اشعه در
آزمایشگاه رادفورد بوسیله گایگر برای بهره برداری آماده شدند. کمی بعد این آشکار سازها عملاً برای اندازه گیری اشعه مورد استفاده قرار گرفتند. اگرچه آشکار سازهای سنتیلاسیون برای آشکار سازی اشعه از مدتها قبل بکار میرفتند. آشکار ساز گایگر از یک الکترود سیلندری خارجی و یک الکترود سیمی داخلی تشکیل میشد که بین آنها
اختلاف پتانسیل الکتریکی قرار داده میشد. گایگر متوجه شد که وقتی یک اشعه در آشکار ساز متوقف میشود
جریان الکتریکی دربین دو الکترود جاری میگردد که بوسیله یک
الکترومتر با حساسیت متوسط قابل اندازه گیری است.
مکانیزم کار آشکار ساز گایگرمولر
در آشکار ساز گایگر ، الکترونهای منفی بطرف الکترود مرکزی حرکت کرده و تکثیر الکترون که گاهی بهمن الکترونی نامیده میشود، درفاصله کمی از آند انجام میپذیرد. الکترونها در فاصله زمانی چند میکرو ثانیه بوسیله آند جمع آوری میشوند. فوتونهای بوجود آمده در نتیجه بازگشت اتمهای تهییج شده به حالت عادی
یونیزاسیون را در طول سیم مرکزی (آند) آشکار ساز توسعه میدهند. این یک اختلاف بزرگ بین یک آشکار ساز تناسبی و یک آشکار ساز گایگر است.
توسعه یونیزاسیون در طول آشکار ساز و حرکت آهسته یونهای مثبت به طرف کاتد اثرات جالبی روی زمان تفکیک دارد. وقتی که پوشش یونهای مثبت از ناحیه مرکزی خارج شده به طرف کاتد حرکت میکند،
میدان الکتریکی اطراف قسمت مرکزی را به صورت حفاظ میپوشاند در حقیقت این وضع میدان را کاهش داده و تابش دیگری که وارد آشکار ساز میشود نمیتواند بهمن دیگری در آشکار ساز بوجود آورد، مگر اینکه این پوشش یونهای مثبت به نزدیکی کاتد برسد هر چه یونهای (مثبت) دورتر میشوند میدان افزایش یافته و بالاخره وقتی بوسیله کاتد جمع میشوند، میدان مقدار اولیه خود را بدست میآورد.
منحنی مشخصاتی شمارش برحسب
ولتاژ در آشکار ساز گایگر اطلاعات زیادی درباره آشکار ساز بدست میدهد. منحنی مشخصاتی را میتوان با قرار دادن یک
چشمه رادیواکتیو با
نیم عمر زیاد در مجاورت آشکار ساز و به دست آوردن شمارش در زمان معین برای ولتاژهای مختلف متصل به آشکار ساز بدست آورد.
گاز مورد استفاده در آشکارساز
هر گازی را میتوان برای آشکارساز بکاربرد ، با وجود این ، اجرای بهتر وقتی نتیجه میشود که
گاز مصرفی خواص زیر را داشته باشد
- پتانسیل کار نباید خیلی بزرگ باشد.
- در گاز نباید یونهای منفی تشکیل گردد.
- گاز نباید دارای ترازهای انرژی متا استابل باشد.
بعضی از گازها نظیر
کلر و
هوا دارای میل ترکیبی زیاد با
الکترون هستند و به آسانی یونهای منفی بوجود میآورند. چنین گازهایی برای استفاده در آشکار سازها خوب نیستند. سرعت حرکت یک یون منفی تقریباً با سرعت حرکت یک یون مثبت برابر است. اگر یک یون منفی در فاصلهای نسبتاً دور از الکترود مرکزی تشکیل شود این یون وقتی به ناحیه با
میدان الکتریکی زیاد میرسد که یونهای مثبت به الکترود بیرونی رسیدهاند
میدان الکتریکی داخل آشکار ساز مجددا مقدار کافی را بدست خواهد آورد تا بهمن الکتریکی دوم بوجود آید.
بنابراین یون منفی یک پالس بوجود خواهد آورد که همراه با پالس ایجاد شده توسط اشعه تابش خواهد بود. این پالس بوجود آمده را یک پالس ساختگی یا مصنوعی نامند. پالسهای همراه یا ساختگی ممکن است، در نتیجه وجود ترازهای متا استابل نیز بوجود آیند چنین ترازهایی ، ترازهای تحریکی اتمی با عمر طولانی میباشند.
این حالت در بر خورد الکترونهای با انرژی زیاد ایجاد میشود بازگشت به حالت عادی این ترازها منجر به تابش فوتونها خواهدشد. فوتونهایی که بدین ترتیب بوجود میآیند میتوانند در نتیجه
پدیده فوتوالکتریک الکترون آزاد نمایند. اگر چنین اتفاقی بعد از جمع آوری یونهای مثبت بیفتد، یک پالس همراه با پالس اصلی بوجود خواهد آمد.
آشکار سازی ذرات آلفا و بتا بوسیله آشکار سازهای گایگر
آشکار ساز گایگر قادر است حتی با یک زوج یون ایجاد شده در داخل آن یک پالس خروجی بدهد، بنابراین اگر اشعه بتواند وارد حجم حساس آن شود شمرده خواهد شد. بدین ترتیب آشکار سازهای گایگر برای تابشهای یونیزان که انرژی آنها تا حداقل 30ev باشد، دارای کارایی یا راندمان 100% میباشند. به هر حال ، این کارایی وقتی بدست میآید که چشمه بتواند در داخل آشکارساز قرار داده شود حتی در چنین حالتی تصحیح مربوط به اثرات دیواره انجام شود (تجزیه چشمه رادیواکتیو در مجاورت دیواره) شمارش با قرار دادن چشمه در داخل آشکار ساز روشی است که بخصوص برای چشمههای تبالی با انرژی کم بکار میرود. وقتی که چشمه رادیواکتیو در بیرون آشکار ساز قرار داده میشود باید بخصوص به ضخامت دریچه آشکار ساز توجه شود. از آنجا که برد
ذرات آلفا و بتا خیلی کوچک میباشد، آشکار سازها باید دارای دریچه خیلی نازک باشند.
آشکار سازی اشعه ایکس و اشعه گاما بوسیله آشکارسازهای گایگر و مولر
اشعه ایکس به دلیل داشتن انرژی کم در مقایسه با
اشعه گاما ، دارای سطح مقطع جذب زیاد در
پدیده فوتوالکتریک میباشد بنابراین لازم است که کنتور دارای دریچه نازک باشد. آشکارسازهای با دریچه نازک که برای بتا بکار میروند میتوانند در مورد
اشعه ایکس نیز مورد استفاده قرار گیرند گاهی اوقات دریچهها از
برلیوم ساخته میشوند. از آنجا که برلیم مادهای با
عدد اتمی کوچک است، سطح مقطع جذب پدیده فتوالکتریک در آن نسبتا کوچک میباشد.
بنابراین قسمت قابل توجهی از اشعه ایکس وارد آشکار سازهایی که دریچه آنها از برلیم است میشوند. در مورد اشعه ایکس تا انرژی 20kev کارایی یا راندمان آشکارسازی خیلی خوب را میتوان به دست آورد. آشکارسازهای گازی را میتوان برای آشکار سازی اشعه گاما نیز بکار برد. به هرحال کار این چنین آشکارسازهایی به دلایل زیر کمتر از اشعه ایکس میباشد. هر چه انرژی اشعه گاما افزایش یابد، سطح مقطع جذب پدیدههای فتوالکتریک و
کامپتون کاهش مییابد و قسمتی از اشعه گاما که الکترون ثانویه در گاز داخل آشکار ساز بوجود میآورد بطور سریع کاهش پیدا میکند. بنابراین نتیجه کار تابع الکترونهای ایجاد شده در دیواره آشکار ساز خواهد بود که گاز داخل را یونیزه نماید.
مباحث مرتبط با عنوان